Импульсы от органа в цнс проводят. Взаимодействие вегетативной нервной системы с иммунитетом, цнс. Особенности строения и функционирования

Какую из перечисленных функций НЕ выполняет спинной мозг? 1) проведение импульсов от головного мозга к скелетной мускулатуре 2) осуществление

простейших двигательных рефлексов 3) проведение импульсов от скелетной мускулатуры к головному мозгу 4) управление произвольными движениями скелетных мышц

Помогите,пожалуйста) Установите соответствие. Суть функции А)Передача нервного импульса от

чувств. нейрона на вставочный нейрон

Б)Передача нервного импульса от рецептеров кожи,мышц по белому веществу спинного мозга в головной мозг

В)Передача нервного импульса от вставочного нейрона на исполнительный нейрон

Г)Передача нервного импульса от головного мозга на исполнительные нейроны спинного мозга.

Функция спинного мозга

1)рефлекторная

2)проводниковая

Какой элемент соматической рефлекторной дуги полностью расположен в спинном мозге? 1)двигательный нейрон 2)вставочный нейрон

3)рецептор

4)рабочий орган

Папоротник, произрастающий в тенистых зарослях леса, – это поколение, на котором образуются

1)заростки

2)половые клетки

4)предростки

При ранении лёгких в первую очередь необходимо

1)провести искусственное дыхание

2)плотно перевязать рану, зафиксировав грудную клетку на выдохе

3)провести непрямой массаж сердца

4)положить пострадавшего на ровную поверхность и согнуть ноги в коленях

С каким из перечисленных организмов у дуба могут сложиться симбиотические отношения?

2)белый гриб

3)дубовый долгоносик

4)бабочка дубовый шелкопряд

Верны ли следующие суждения о строении нервной системы человека?

А. Нервные узлы – это скопление тел нервных клеток за пределами центральной нервной системы

Б. Двигательные нейроны передают нервные импульсы от органов чувств в спинной мозг.

1)верно только А

2)верно только Б

3)верны оба суждения

4)оба суждения неверны

При прорастании семени ржи проросток первое время получает питательные
вещества из
1)семядоли
2)зародышевого корешка
3)эндосперма
4)почвы

Какой тканью выстланы головка и суставная ямка суставов?
1)хрящевой
2)нервной
3)гладкой мышечной
4)поперечнополосатой мышечной

Что происходит в организме человека, если в воздухе повысилась
концентрация углекислого газа?
1)угнетение дыхательного центра
2)возбуждение дыхательного центра
3)раздражение дыхательных путей
4)сужение капилляров лёгочных пузырьков

Верны ли следующие суждения об агротехнических приёмах выращивания
культурных растений?
А. Азотные удобрения вносят в почву в виде подкормки для усиления роста
листьев и стеблей растений.
Б. Прищипку корней проводят для развития боковых и придаточных корней
в верхних слоях почвы.
1)верно только А
2)верно только Б
3)верны оба суждения
4)оба суждения неверны

Расположите в правильном порядке организмы в цепи питания. В ответе
запишите соответствующую последовательность цифр.
1)паук
2)сова
3)цветущее растение
4)муха
5)жаба

пожалуйста помогите,очень надо!

#1
такие свойства как возбудимость и сократимость характерны для ткани:
а)эпителиальной
б)соединительной
в)нервной
г)мышечной
#2
гладкая мышечная ткань образует
а)покровы тела
б)кожу
в)стенки кровеносных сосудов
г)костный мозг
#3
чувствительные нейроны участвуют в передаче импульса
а)нейрона к нейрону
б)органов чувств к спинному и головному мозгу
в)спинного и головного мозга к органам
г)одного внутреннего органа к другому
#4
верны ли следующие утверждения?
а) белое вещество образованно аксонами,покрытыми миелиновой оболочкой.
б)двигательные нейроны передают импульсы от органов чувств в спиной и головной мозгу
1)верно только А
2)верно только Б
3)верны оба утверждения
4)оба варианты не верны
#5

(4 занятия)

Занятие 1-е

Рефлекс и функциональная система. Возбуждение цнс

1. Назовите основные функции центральной нервной системы (ЦНС).

1) Управление деятельностью опорно-двигательного аппарата, 2) регуляция функций внутренних органов, 3) обеспечение психической деятельности 4) формирование взаимодействия организма с окружающей средой.

2. Назовите два основных принципа регуляции функций организма, сформулируйте их сущность.

1) Принцип саморегуляции (организм с помощью собственных регуляторных механизмов обеспечивает интенсивность деятельности всех органов и систем согласно своим потребностям в различных условиях жизнедеятельности). 2) Системный принцип – регуляция констант организма с помощью вовлечения различных органов и систем.

3. Какие два типа саморегуляции функций имеются в организме? Укажите их сущность.

1) По отклонению, когда отклонение параметров констант организма от нормы включают регуляторные механизмы, устраняющие это отклонение. 2) По опережению, когда регуляторные механизмы включаются раньше и предупреждают отклонения параметров констант организма от нормы.

4. Назовите механизмы регуляции функций организма. Какая регуляция является ведущей?

Нервный, гуморальный, миогенный. Ведущей является нервная регуляция.

5. Что понимают под миогенным механизмом регуляции? Перечислите органы, для которых этот вид регуляции является важным.

Способность мышцы изменять свою сократительную активность и/или степень автоматии при изменении степени ее растяжения. Скелетная мускулатура, сердце, желудочно-кишечный тракт, желчный и мочевой пузыри, мочеточники, сосуды, бронхи, матка.

6. Перечислите основные особенности гуморальной регуляции функций.

Генерализованное действие, замедленное действие, осуществляется с помощью большого набора химических агентов.

7. Перечислите особенности нервной регуляции по сравнению с гуморальной.

Возможность точного локального действия, быстрота действия, обеспечивает взаимодействие организма с окружающей средой.

8. Назовите виды влияний нервной системы на органы, поясните их сущность.

Пусковое влияние (начало или прекращение функции) и модулирующее (изменение интенсивности работы органа).

9. Приведите пример пускового и модулирующего влияний нервной системы на функции органов.

Пусковое влияние – запуск сокращений покоящейся скелетной мышцы при поступлении к ней нервных импульсов, прекращение сокращений при отсутствии импульсов. Модулирующее влияние – увеличение частоты и силы сокращений сердца при поступлении импульсов к нему по симпатическому нерву.

10. Перечислите пути (механизмы) реализации пускового и модулирующего влияний нервной системы на функции органов.

Пусковое – изменение активности процессов возбуждения и торможения в органе под влиянием нервных импульсов (электрогенное действие). Модулирующее – изменение интенсивности обмена веществ (адаптационно-трофическое действие), изменение интенсивности кровоснабжения органа (сосудодвигательное действие).

11. В чем состоит сущность феномена Орбели-Гинецинского?

В усилении сокращений утомленной мышцы при раздражении иннервирующего ее симпатического нерва.

12. Сформулируйте понятие "нервизм".

Нервизм – концепция, признающая ведущую роль нервной системы в регулировании процессов жизнедеятельности организма.

13. Сформулируйте понятие "рефлекс".

Рефлекс – ответная реакция организма на раздражение рецепторов, осуществляемая при обязательном участии нервной системы.

14. Когда и кем была впервые высказана идея о рефлекторном принципе деятельности центральной нервной системы? В чем заключается универсальность рефлекса?

Декартом в первой половине 17 века. В основе деятельности всех уровней нервной системы лежит рефлекторный принцип.

15. Кто распространил принцип рефлекса на психическую деятельность? Сформулируйте основную идею автора книги "Рефлексы головного мозга".

И. М. Сеченов. Все акты сознательной и бессознательной жизни по способу их происхождения – рефлексы. Психическая деятельность также имеет рефлекторную природу.

16. Назовите три принципа рефлекторной теории Декарта-Сеченова-Павлова.

Принцип детерминизма, принцип структурности, принцип анализа и синтеза.

17. В чем заключается сущность принципа структурности в рефлекторной теории?

Любой рефлекс осуществляется с помощью определенных нервных структур. Чем больше структур ЦНС участвует в осуществлении реакции, тем она совершеннее.

18. В чем заключаются принципы 1) детерминизма и 2) анализа и синтеза в рефлекторной теории?

1) Каждый рефлекторный акт причинно обусловлен. 2) В различении всех действующих на организм раздражителей и формировании ответной реакции.

19. Кто и в каком опыте (опишите) впервые доказал приспособительный характер изменчивости рефлекса?

И. М. Сеченов в опыте на таламической лягушке с "переключением рефлекса": раздражение согнутой конечности вызывает ее разгибание, разогнутой – сгибание.

20. Что называют рефлекторной дугой?

Совокупность структурных элементов, с помощью которых осуществляется рефлекс.

21. Нарисуйте схему рефлекторной дуги соматического рефлекса и обозначьте пять ее звеньев.

3 – вставочный нейрон; 4 – мотонейрон; 5 – эффектор (скелетная мышца).

22. Нарисуйте схему рефлекторной дуги вегетативного (симпатического) рефлекса и обозначьте пять ее звеньев.

1 – рецептор; 2 – афферентный нейрон; 3 – центральный (преганглионарный) нейрон; 4 – ганглионарный нейрон (симпатический ганглий); 5 – эффектор (гладкая мышца).

23. Нарисуйте схему рефлекторной дуги вегетативного (парасимпатического) рефлекса и обозначьте пять ее звеньев.

24. Назовите 1-е и 2-е звенья рефлекторной дуги и укажите их функциональную роль в реализации рефлекса.

Первое звено (рецептор) воспринимает раздражение, трансформируя энергию раздражения в нервный импульс. Второе звено (афферентный нейрон) проводит импульсы в ЦНС.

25. Назовите 3-е звено рефлекторной дуги и укажите его функциональную роль в реализации рефлекса.

Вставочные нейроны – передают импульсы к эфферентному нейрону и обеспечивают связь данной рефлекторной дуги с другими отделами ЦНС.

26. Назовите 4-е и 5-е звенья рефлекторной дуги и укажите их функциональную роль в реализации рефлекса.

Четвертое звено (эфферентный нейрон) перерабатывает информацию, поступающую к нему от вставочных нейронов ЦНС и формирует ответ в виде нервных импульсов, посылаемых к 5-у звену – к рабочему органу.

27. Нарисуйте общую схему функциональной системы (для регуляции физиологических констант организма).

28. Что называют нервным центром?

Совокупность нейронов, расположенных на различных уровнях ЦНС, достаточная для приспособительной регуляции функции органа или системы.

29. Какие органы и ткани иннервирует соматическая нервная система, какие – вегетативная нервная система?

Соматическая – скелетные мышцы, вегетативная – все внутренние органы, ткани и сосуды.

30. Где расположены тела афферентных нейронов для соматической и вегетативной рефлекторной дуги?

Для соматической – в спинномозговых ганглиях и ганглиях черепных нервов. Для вегетативной – там же, а также в экстра- и интрамуральных вегетативных ганглиях.

31. Назовите два вида вставочных нейронов, отличающихся по влиянию на другие нервные клетки. Какая часть нейрона выполняет трофическую функцию? Где обычно генерируется потенциал действия в нейроне?

Возбуждающие и тормозящие. Тело нервной клетки и в аксонном холмике соответственно.

32. Где расположены тела двигательных нейронов, иннервирующих рабочие органы, для соматической и вегетативной нервной системы?

Для соматической – в передних рогах спинного мозга и двигательных ядрах черепных нервов, для вегетативной – вне ЦНС (в экстра- и интрамуральных вегетативных ганглиях).

33. Что называют рецептивным полем рефлекса или рефлексогенной зоной?

Область скопления рецепторов, раздражение которой вызывает данный рефлекс.

34. Назовите рецептивные поля рефлексов глотания, слюноотделения, чихания, кашля.

Глотания – корень языка и задняя стенка глотки; слюноотделения – слизистая рта; чихания – слизистая носа; кашля – слизистая воздухоносных путей.

35. Назовите виды межнейрональных синапсов, различающихся по функции (знаку действия) и по механизму передачи возбуждения.

По функции – возбуждающие и тормозящие. По механизму передачи возбуждения – химические и электрические.

36. Что такое посттетаническая (постактивационная) потенциация – феномен облегчения? Какова главная причина этого феномена?

Временное облегчение проведения возбуждения в химических синапсах после их предварительной ритмической активации. Накопление кальция в пресинаптических окончаниях.

37. Перечислите основные медиаторы центральной нервной системы.

Ацетилхолин, катехоламины, серотонин, глютамат, аспартат, гаммааминомасляная кислота, глицин, субстанция Р.

38. О чем свидетельствует факт разнонаправленного влияния одного и того же медиатора в различных синапсах?

О том, что эффект зависит не только от свойств медиатора, но и от свойств постсинаптической мембраны.

39. Кто, когда и в каком опыте открыл медиаторный механизм передачи возбуждения в синапсах центральной нервной системы?

Экклс в 1951 году в опыте с аппликацией ацетилхолина на постсинаптическую мембрану нейрона и регистрацией возникающего при этом возбуждения.

40. Как называют потенциал, возникающий в постсинаптической мембране нейрона под влиянием возбуждающего медиатора? Локальным или распространяющимся он является?

Возбуждающий постсинаптический потенциал. Локальным.

41. Перечислите основные свойства возбуждающего постсинаптического потенциала (ВПСП). Как изменяется возбудимость нейрона при возникновении ВПСП?

Не распространяется, не подчиняется закону "все или ничего", т. е. зависит от силы раздражения, способен суммироваться. Возбудимость нейрона повышается.

42. Какова роль ферментов, разрушающих медиатор, в обеспечении функционирования синапсов?

Обеспечивают готовность постсинаптической мембраны для восприятия очередного импульса.

43. Какова роль кальция в проведении возбуждения через синапсы в ЦНС? Какой эффект вызывает магний?

Кальций способствует выделению медиатора в синаптическую щель. Магний препятствует этому эффекту.

44. Какова реакция нейрона на одиночный возбуждающий импульс и на серию импульсов?

В ответ на одиночный импульс возникает локальный потенциал (деполяризация) в десятки раз меньше порогового потенциала; на серию импульсов возникает суммированный ВПСП, который при достижении пороговой величины вызывает процесс возбуждения.

45. Каково соотношение между числом поступающих к нейрону импульсов и генерируемых им импульсов?

Поступающих импульсов в десятки и сотни раз больше, чем генерируемых.

46. Почему обычно возбуждение нейрона (потенциал действия) начинается с аксонного холмика? С чем это связано?

Возбудимость нейрона в области аксонного холмика наибольшая в связи с высокой концентрацией быстрых натриевых каналов в этой части нейрона. Электротоническое распространение ВПСП, достаточной амплитуды, достигает аксонного холмика, т.к. размеры нейрона относительно малы.

47. Почему при передаче возбуждения в химическом синапсе сигнал обратно не передается?

Потому что пресинаптическая мембрана не возбуждается под влиянием медиатора, выделившегося в синаптическую щель, а местные токи постсинаптической мембраны не возбуждают пресинаптическую мембрану из-за достаточно широкой синаптической щели.

48. Сколько требуется времени для возбуждения нейрона в центральной нервной системе при поступлении к нему импульсов, чем это объясняется?

Около 2 мс. Необходимо время на выделение медиатора, диффузию его через синаптическую щель, взаимодействие с постсинаптической мембраной и возникновение суммированного ВПСП пороговой величины.

49. Что называют латентным временем рефлекса? От чего оно зависит?

Время от начала раздражения до возникновения ответной реакции. От числа вставочных нейронов, от силы раздражения, от функционального состояния нервных центров.

50. Из каких компонентов складывается латентное время рефлекса?

Из времени, необходимого для возникновения возбуждения в рецепторе, проведения возбуждения по всем звеньям рефлекторной дуги и латентного периода эффектора.

51. Время каких спинальных рефлексов (экстеро-, интеро- или проприоцептивных) у человека наиболее короткое и почему?

Проприоцептивных, рефлекторные дуги которых являются самыми короткими – двухнейронными, а нервные волокна имеют наибольшую скорость проведения возбуждения.

52. Перечислите особенности распространения возбуждения в центральной нервной системе.

Одностороннее в химических синапсах, замедленное, возможность циркуляции возбуждения, иррадиация и конвергенция возбуждения.

53. Каковы причины иррадиации, конвергенции и циркуляции возбуждения в ЦНС?

Множество коллатералей в центральной нервной системе (дивергенция), схождение многих нервных путей к одному нейрону (конвергенция), наличие кольцевых нейронных цепей.

54. Нарисуйте схему замкнутых нейронных цепей, объясняющую возможность циркуляции возбуждения в центральной нервной системе по Лоренто де-Но и по Беритову.


а – по Лоренто де-Но, б – по И.С.Беритову. 1, 2, 3 – возбуждающие нейроны.

55. Как доказать одностороннее проведение возбуждения по рефлекторной дуге?

При раздражении переднего корешка спинного мозга возбуждение в заднем корешке не возникает, при раздражении заднего корешка спинного мозга регистрируется возбуждение в переднем корешке данного сегмента.

56. Что называют иррадиацией возбуждения в центральной нервной системе, как ее доказать?

Широкое распространение возбуждения в ЦНС. Например, при увеличении силы раздражения одной лапки лягушки в реакцию вовлекаются все конечности.

57. С какой целью в клинической практике применяют блокаду проведения возбуждения в ЦНС?

С целью обезболивания в хирургической практике и для лечения различных патологических процессов.

58. Что является движущей силой и условием для перемещения ионов Na + и К + в процессе возбуждения клетки?

Движущая сила – концентрационный и, частично, электрический градиенты. Условие – повышение проницаемости клеточной мембраны для ионов.

59. В какие фазы потенциала действия концентрационный и электрический градиенты способствуют или препятствуют входу натрия внутрь клетки?

Концентрационный градиент способствует в фазу деполяризации и инверсии (восходящая часть), электрический – в фазу деполяризации способствует, в фазу инверсии (восходящая часть) – препятствует.

60. В какие фазы потенциала действия концентрационный и электрический градиенты способствуют или препятствуют выходу ионов калия из клетки?

Концентрационный градиент обеспечивает выход К + в фазу инверсии и реполяризации, электрический градиент – в фазу нисходящей части инверсии способствует, в фазу реполяризации – препятствует.

1. В какие сроки внутриутробного развития возникают локальные защитные рефлекторные реакции и ритмические сокращения дыхательных мышц?

На 8-й и 14-й неделях соответственно.

2. Как называют позу, характерную для плода, чем она объясняется?

Ортотоническая. Преобладанием тонуса мышц-сгибателей.

3. Опишите положение плода (внешне) в ортотонической позе, каково значение этой позы?

Конечности согнуты и прижаты к туловищу, спина и шея согнуты, что обеспечивает наименьший объем занимаемого пространства.

4. В какие сроки беременности возникает шевеление плода, ощущаемое матерью, какова частота их возникновения и причины увеличения частоты?

В 4 – 4, 5 месяца с частотой 4 – 8/час, учащается при физической нагрузке и эмоциональном возбуждении матери и обеднении крови питательными веществами и кислородом.

5. Какова особенность гематоэнцефалического барьера (ГЭБ) у детей, какие патологические последствия могут возникать в результате этого?

Повышенная проницаемость, что увеличивает опасность проникновения токсических продуктов в мозг и возникновения судорог при различных патологических процессах.

6. В чем заключается и с чем связана особенность развития процессов возбуждения и торможения в нейронах центральной нервной системы новорожденных?

Замедленное возникновение вследствие малого числа синапсов на нейронах и недостаточного количества медиатора в пресинаптических окончаниях.

7. Какова основная особенность распространения возбуждения у новорожденных детей, чем это объясняется?

Более выраженная, чем у взрослых, иррадиация возбуждения, что объясняется недостаточной миелинизацией нервных волокон и малой эффективностью тормозных влияний.

8. Опишите характер и объем движений новорожденного.

Беспорядочные движения всех конечностей, туловища и головы сменяются координированными движениями конечностей. Периоды двигательной активности явно преобладают над периодами покоя.

9. Какая поза характерна для новорожденного, до какого возраста она сохраняется? В регуляции какой константы организма она играет важную роль? Почему?

Ортотоническая поза, сохраняется до 1, 5 месяцев жизни ребенка. В регуляции температуры тела, т.к. тоническое сокращение мышц-сгибателей обеспечивает увеличение теплопродукцию, а ортотоническая поза – малую теплоотдачу.

10. Каково соотношение тонуса мышц-сгибателей и разгибателей у детей от момента рождения до 3 – 5 месяцев?

У новорожденных наблюдается преобладание тонуса сгибателей, у детей 1, 5 – 2 месяцев возрастает тонус разгибателей, в возрасте 3 – 5 месяцев – нормотония.

11. Назовите отличительные особенности рефлексов новорожденного.

Генерализованный характер ответной реакции; обширность рефлексогенных зон.

12. Перечислите основные группы рефлексов новорожденного.

Защитные, пищевые, двигательные, тонические, ориентировочные.

13. Каковы особенности проведения возбуждения по нервному волокну новорожденного по сравнению с проведением возбуждения у взрослого?

Проведение возбуждения медленное и не полностью изолированное.

14. Назовите факторы, обеспечивающие увеличение скорости проведения возбуждения по нервным волокнам с возрастом.

Миелинизация нервных волокон, увеличение их диаметра и амплитуды потенциала действия.

15. Почему скорость проведения возбуждения по миелинизированным нервным волокнам у новорожденного значительно (в два раза) меньше, чем у взрослых?

Потому что диаметр нервных миелинизированных волокон новорожденных значительно меньше, как и расстояние между перехватами Ранвье (потенциал действия "перепрыгивает" на меньшее расстояние).

Занятие 2-е

СВОЙСТВА НЕРВНЫХ ЦЕНТРОВ. ТОРМОЖЕНИЕ.

КООРДИНАЦИОННАЯ ДЕЯТЕЛЬНОСТЬ ЦНС

1. Что называют нервным центром?

Совокупность нейронов, расположенных на разных уровнях ЦНС, достаточную для приспособительного регулирования функций органа или системы.

2. Перечислите основные свойства нервных центров.

Инерционность, фоновая активность, трансформация ритма, большая чувствительность к изменениям внутренней среды, быстрая утомляемость, пластичность.

3. Что понимают под инерционностью нервных центров? С какими явлениями она связана?

Медленное возникновение и медленное исчезновение возбуждения. С явлениями суммации и последействия.

4. Что происходит в нервном центре при поступлении к нему серии “возбуждающих” импульсов?

Суммация возбуждающих постсинаптических потенциалов в нейронах нервного центра, в результате которой может возникнуть импульсное возбуждение.

5. Назовите виды суммации. Кто, когда и в каком опыте открыл это явление? Опишите опыт.

Пространственная и временная (последовательная). И. М. Сеченов в 1868 г. в опыте на таламической лягушке. Одиночное подпороговое раздражение лапки лягушки не вызывает рефлекторной реакции, а ритмическое раздражение той же силы вызывает рефлекс – отдергивание лапки или прыжок.

6. Что такое временная (последовательная) суммация?

Суммация ВПСП в нейронах при поступлении к ним серии нервных импульсов по одному и тому же афферентному пути.

7. Что такое пространственная суммация?

Суммация ВПСП в нейронах ЦНС, к которым импульсы подходят одновременно по многим афферентным волокнам.

8. Что понимают под последействием в центральной нервной системе? Каков его механизм?

Продолжение возбуждения в нервных центрах после прекращения раздражения. Длительное существование ВПСП, следовая деполяризация в нейронах, циркуляция возбуждения в нервных центрах.

9. Что такое фоновая активность нервных центров? Каковы ее причины?

Генерация импульсов в нервных центрах вследствие спонтанной деполяризации мембраны нейронов, гуморальных воздействий и постоянной афферентной импульсации от рецепторов.

10. Что понимают под трансформацией ритма в нервных центрах?

Относительную независимость частоты импульсов, возникающих в нервных центрах, по сравнению с частотой поступающих к ним импульсов.

11. Чем объясняется трансформация ритма в нервных центрах?

Явлением суммации ВПСП, иррадиации, конвергенции и циркуляции возбуждения, а также наличием следовых потенциалов в нейронах центральной нервной системы.

12. Какие факторы определяют величину рефлекторной реакции?

Уровень возбудимости нервного центра (функциональное состояние ЦНС), сила раздражения рефлексогенной зоны, функциональное состояние рабочего органа.

13. Опишите кратко опыт, доказывающий большую чувствительность центральной нервной системы к недостатку кислорода по сравнению с нервом и мышцей.

После выключения кровообращения рефлексы у спинальной лягушки исчезают раньше, чем реакция нервов и мышц на раздражение.

14. Чем лимитируется время реанимации (возвращения жизни) после клинической смерти – остановки сердца? Почему?

Повышенной чувствительностью клеток коры больших полушарий к недостатку кислорода. Они начинают погибать через 5 – 6 мин после прекращения кровообращения.

15. Нарисуйте схему опыта Н. Е. Введенского, доказывающего локализацию утомления в рефлекторной дуге.

1 – раздражение большеберцового нерва; 2 – раздражение малоберцового нерва;

3 – полусухожильная мышца лягушки; 4 – кривая сокращения полусухожильной мышцы.

16. Какие два нервных процесса, постоянно взаимодействуя, лежат в основе деятельности центральной нервной системы? Распространяются ли они?

Возбуждение и торможение. Возбуждение распространяется, торможение не распространяется.

17. Какой процесс в центральной нервной системе называют торможением?

Активный нервный процесс, результатом которого является прекращение возбуждения или снижение возбудимости нервной клетки.

18. Кем и когда были открыты процессы периферического и центрального торможения?

Братьями Вебер в 1845 г. и И. М. Сеченовым в 1863 г. соответственно.

19. Опишите опыт И. М. Сеченова, приведший к открытию центрального торможения.

При раздражении области зрительных бугров кристалликом поваренной соли у таламической лягушки наблюдалось удлинение времени рефлекса, измеряемого по способу Тюрка.

20. В чем заключается приоритет И. М. Сеченова в области изучения физиологии центральной нервной системы?

Распространил представление о рефлексе на психическую деятельность, открыл явление суммации возбуждения в нервных центрах и центральное торможение.

21. Опишите опыт Мегуна, доказывающий наличие специальных тормозных структур в стволе мозга.

Раздражение ретикулярной формации продолговатого мозга вызывает торможение коленного рефлекса у кошки.

22. Какое торможение называют реципрокным?

Торможение нервного центра при возбуждении другого центра – его антагониста.

23. Назовите два вида торможения в нейронах центральной нервной системы, отличающихся друг от друга по механизму возникновения и по локализации.

Постсинаптическое и пресинаптическое.

24. Что называют постсинаптическим торможением нейрона? С помощью каких нейронов оно возникает? В каких отделах ЦНС оно встречается?

Торможение, связанное со снижением возбудимости нейрона. С помощью тормозных интернейронов. Встречается в различных отделах ЦНС.

25. Как называют потенциал, возникающий в нейроне при постсинаптическом торможении, как изменяется мембранный потенциал нейрона при этом?

Тормозной постсинаптический потенциал (ТПСП); увеличивается, т. е. возникает гиперполяризация клеточной мембраны.

26. Под влиянием какого медиатора возникает тормозный постсинаптический потенциал (ТПСП) в мотонейронах спинного мозга? Как можно зарегистрировать ТПСП?

Под влиянием тормозного медиатора глицина. С помощью введения микроэлектрода внутрь клетки и регистрации гиперполяризации ее мембраны.

27. Движение каких ионов и в каких направлениях обеспечивает возникновение ТПСП?

Движение хлора в клетку, калия из клетки.

28. Нарисуйте схему возбуждающего и тормозного постсинаптических потенциалов.

29. Перечислите свойства ТПСП. Как и вследствие чего изменяется возбудимость клетки при возникновении ТПСП?

Не распространяется, не подчиняется закону "все или ничего", может суммироваться. Снижается вследствие гиперполяризации клеточной мембраны.

30. Назовите разновидности постсинаптического торможения.

Возвратное, латеральное, параллельное и прямое (реципрокное).

31. Нарисуйте схему, отражающую взаимодействие возбуждающих и тормозных нейронов при возвратном и параллельном постсинаптическом торможении.

1 – параллельное, 2 – возвратное постстсинаптическое торможение.

32. Нарисуйте схему, отражающую взаимодействие возбуждающих и тормозных нейронов при латеральном постсинаптическом торможении.

33. Нарисуйте схему, отражающую взаимодействие возбуждающих и тормозных нейронов при прямом (реципрокном) постсинаптическом торможении.

34. Как влияет на мембранный потенциал нейрона одновременное поступление к нему импульсов от возбуждающих и тормозных клеток, способных вызвать равные по величине ВПСП и ТПСП, почему?

Вследствие алгебраической суммации ВПСП и ТПСП мембранный потенциал не изменится.

35. Какое торможение называется пресинаптическим, вследствие чего оно возникает? В каких отделах ЦНС оно встречается?

Торможение, возникающее в пресинаптической терминали вследствие ее стойкой деполяризации. Встречается в различных отделах ЦНС.

36. Под влиянием чего возникает стойкая деполяризация терминалей аксона возбуждающего нейрона в случае пресинаптического торможения?

Под влиянием тормозного медиатора, выделяющегося из окончания аксона вставочного тормозного нейрона.

37. Почему в случае стойкой деполяризации пресинаптической терминали возбуждение на постсинаптический нейрон не передается?

Потому что в пресинаптической терминали не возникает потенциал действия (или он очень мал), вследствие чего резко снижается выделение медиатора из пресинаптического окончания в синаптическую щель.

38. Изменяется ли возбудимость нейрона и его мембранный потенциал в случае пресинаптического торможения? Объясните механизм.

Не изменяются, т. к. деполяризация пресинаптической терминали вызывает блокаду проведения нервного импульса на пути к постсинаптическому нейрону.

39. Нарисуйте схему, отражающую взаимодействие возбуждающих и тормозных нейронов при параллельном пресинаптическом торможении.

40. Нарисуйте схему, отражающую взаимодействие возбуждающих и тормозных нейронов при латеральном пресинаптическом торможении.

41. Каково значение различных видов торможения в ЦНС?

Торможение является важным фактором координационной деятельности ЦНС, участвует в обработке информации, поступающей к нейрону, выполняет охранительную роль.

42. Как и почему влияет стрихнин на распространение возбуждения в ЦНС? К чему это ведет?

Стрихнин выключает постсинаптическое торможение. Это ведет к иррадиации возбуждения в ЦНС и, как следствие, – к резкому увеличению тонуса скелетных мышц и к их генерализованным судорожным сокращениям.

43. Что понимают под координацией деятельности ЦНС?

Согласование деятельности различных отделов ЦНС посредством упорядочения распространения возбуждения.

44. Перечислите факторы, обеспечивающие координацию деятельности ЦНС?

Фактор структурно-функциональной связи, фактор субординации, фактор силы, одностороннее распространение возбуждения в синапсах, феномен облегчения, доминанта.

45. Что понимают под фактором структурно-функциональной связи в координационной деятельности ЦНС?

Наличие врожденной или приобретенной связи между определенными нервными центрами, между нервными центрами и рабочими органами, обеспечивающей преимущественное распространение возбуждения между ними.

46. Назовите варианты структурно-функциональной связи между нервными центрами, а также между ЦНС и органами, обеспечивающей координационную деятельность нервной системы.

Прямая, реципрокная и обратная связи.

47. Что понимают под принципом прямой и обратной связи (обратной афферентации) в координационной деятельности ЦНС?

Управление функцией нервных центров или органов путем посылки эфферентных импульсов к ним (прямая связь) с учетом афферентной импульсации от них (обратная связь);последняя информирует управляющий центр о параметрах результата действия, что обеспечивает более совершенную регуляцию.

48. Какова роль реципрокного торможения в управлении деятельностью скелетной мускулатуры? Приведите пример. Пре- или постсинаптическим оно является?

Обеспечивает торможение центра-антагониста и расслабление соответствующих ему мышц (например, при возбуждении центра, иннервирующего мышцы-сгибатели, тормозится центр, иннервирующий мышцы-разгибатели, и наоборот). Постсинаптическим.

49. Что понимают под принципом субординации нервных центров? Что понимают под фактором силы в координационной деятельности ЦНС?

Подчинение деятельности нижележащих отделов ЦНС вышележащим. При одновременном действии на организм разных по силе и биологическому значению раздражителей, вовлекающих в соответствующие рефлекторные реакции один и тот же нервный центр (общий конечный путь) побеждает сильнейший и наиболее значимый.

50. Какие влияния могут изменить исходное функциональное состояние нервного центра?

Утомление, нарушение кровообращения или снабжения кислородом, афферентная импульсация, гуморальные влияния.

51. Какое явление в центральной нервной системе называют доминантой? Кто его открыл?

Стойкий "господствующий" очаг возбуждения, подчиняющий себе функции других нервных центров. А. А. Ухтомский.

52. Перечислите свойства доминантного очага возбуждения в ЦНС.

Повышенная возбудимость, стойкость возбуждения, способность "притягивать" к себе возбуждения, идущие по разным афферентным путям, и тормозить деятельность других нервных центров.

53. Какие факторы могут вызвать появление доминантного очага возбуждения в центральной нервной системе? Приведите примеры.

Длительное действие на центры потока афферентных импульсов и гуморальных сдвигов в организме. Чувство голода, половая доминанта, болевые ощущения при патологии.

54. Назовите виды влияния нервной системы на органы и ткани и три принципа рефлекторной теории Декарта-Сеченова-Павлова.

Пусковое и модулирующее. Принцип детерминизма, принцип структурности, принцип анализа и синтеза.

55. Нарисуйте схему рефлекторной дуги соматического рефлекса и обозначьте пять ее звеньев.

56. Нарисуйте схему рефлекторной дуги вегетативного (парасимпатического) рефлекса и обозначьте пять ее звеньев.

1 – рецептор; 2 – афферентный нейрон; 3 – центральный (преганглионарный) нейрон; 4 – ганглионарный нейрон (парасимпатический ганглий); 5 – эффектор (гладкая мышца).

57. Нарисуйте общую схему функциональной системы (для регуляции физиологических параметров).

(По К.В.Судакову с изменениями)

58. Перечислите основные свойства возбуждающего постсинаптического потенциала (ВПСП). Как изменяется возбудимость клеточной мембраны под влиянием ВПСП?

Не распространяется, не подчиняется закону "все или ничего", зависит от силы раздражителя, способен суммироваться. Возбудимость повышается.

59. Перечислите закономерности распространения возбуждения в ЦНС.

Одностороннее, замедленное, циркуляция возбуждения, иррадиация и конвергенция возбуждения.

60. Какие структурно-функциональные особенности ЦНС лежат в основе иррадиации, конвергенции и циркуляции возбуждения в нервных центрах?

Множество коллатералей в ЦНС (дивергенция), схождение многих афферентных путей к одному нейрону (конвергенция), наличие кольцевых нейронных путей.

1. Какова особенность процесса торможения у новорожденных? С чем она связана?

Слабость процессов торможения вследствие незрелости тормозных нейронов (меньше, чем у взрослых тормозных синапсов, мала амплитуда ТПСП).

2. Назовите пищевые и защитные рефлексы новорожденных.

Пищевые рефлексы: сосания, глотания; рвотный; защитные: чихания, мигания, оборонительный (рефлекс отдергивания).

3. Перечислите основные двигательные рефлексы новорожденного.

Хватательный (Робинзона), обхватывания (Моро), подошвенный (Бабинского), коленный, хоботковый, поисковый, ползания (Бауэра).

4. Опишите сущность и способ вызова хватательного рефлекса (Робинзона), когда он исчезает?

Схватывание и прочное удерживание предмета, пальца, карандаша или игрушки, если они касаются ладони. Иногда при этом удается приподнять ребенка над опорой. Исчезает на 2 – 4 месяце жизни ребенка.

5. Опишите сущность и способ вызова рефлекса обхватывания (Моро), до какого возраста он сохраняется у ребенка?

6. Опишите сущность и способ вызова подошвенного рефлекса (Бабинского).

7. Опишите сущность и способ вызова коленного рефлекса новорожденного, объясните причину его отличия от коленного рефлекса взрослых.

Коленный рефлекс – сгибание (у взрослых разгибание) в коленном суставе при раздражении сухожилия четырехглавой мышцы ниже коленной чашечки. Сгибание является следствием преобладания у новорожденных тонуса мышц-сгибателей.

8. Опишите сущность и способ вызова хоботкового рефлекса.

Хоботковый рефлекс – выпячивание губ в результате сокращения круговой мышцы рта при легком ударе пальцем по губам ребенка или поколачивании кожи вокруг рта на уровне десен.

9. Опишите сущность и способ вызова поискового рефлекса новорожденного, в каком возрасте он исчезает?

Поисковый рефлекс – поиск груди матери; при этом наблюдается опускание губ, отклонение языка и поворот головы в сторону раздражителя. Рефлекс вызывают поглаживанием кожи в области угла рта. Исчезает к концу первого года жизни.

10. Опишите сущность и способ вызова рефлекса ползания (Бауэра) новорожденных, когда он исчезает?

Ребенка кладут на живот, в этом положении он на несколько мгновений поднимает голову и совершает ползающие движения (спонтанное ползание). Если подставить под подошвы ладонь, эти движения оживятся – в "ползание" включаются руки, и он начинает активно отталкиваться ногами от препятствия, рефлекс исчезает к 4 месяцам.

11. Перечислите основные тонические рефлексы новорожденного ребенка первого полугодия жизни.

Лабиринтный тонический рефлекс, туловищная выпрямительная реакция, верхний рефлекс Ландау, нижний рефлекс Ландау, рефлекс Кернига.

12. Опишите лабиринтный тонический рефлекс новорожденного и способ его вызова.

У ребенка, лежащего на спине, повышен тонус разгибателей шеи, спины и ног. Если же его перевернуть на живот, увеличивается тонус сгибателей шеи, спины и конечностей. Вызывается соответствующим изменением положения тела.

13. Какая поза характерна для новорожденного, до какого возраста она сохраняется, в регуляции какой константы организма она играет важную роль? Почему?

Ортотоническая поза, сохраняется до 1, 5 месяцев жизни ребенка, важна для регуляции температуры тела – тоническое сокращение мышц-сгибателей обеспечивает высокую теплопродукцию, а ортотоническая поза – малую теплоотдачу.

14. Каково соотношение тонуса мышц-сгибателей и разгибателей у детей от момента рождения до 3 – 5 месяцев?

У новорожденных наблюдается преобладание тонуса сгибателей, у детей 1, 5 – 2 месяцев – начинает повышаться тонус разгибателей, в возрасте 3 – 5 месяцев – нормотония.

15. Назовите отличительные особенности рефлексов новорожденного. С чем они связаны?

Генерализованный характер ответной реакции, обширность рефлексогенных зон, что связано с иррадиацией возбуждения в ЦНС детей.

Занятие 3-е

ФИЗИОЛОГИЯ СПИННОГО МОЗГА И СТВОЛА МОЗГА

1. Какие функции выполняет спинной мозг? Сформулируйте закон Белла-Мажанди.

Рефлекторную и проводниковую. Передние корешки спинного мозга являются двигательными, задние – чувствительными.

2. Приведите экспериментальные факты, доказывающие закон Белла-Мажанди.

Перерезка задних корешков выключает чувствительность, перерезка передних корешков приводит к выключению двигательной активности (паралич).

3. Какое значение для организма имеют афферентные импульсы, поступающие в центральную нервную систему по задним корешкам спинного мозга?

Обеспечивают рефлекторную регуляцию функций внутренних органов и двигательного аппарата, поддержание тонуса ЦНС; информируют ЦНС об окружающей среде.

4. Что называют сегментарными и надсегментарными нервными центрами?

Сегментарные нервные центры состоят из нейронов, непосредственно связанных с эффекторами определенных метамеров тела. Надсегментарные нервные центры непосредственной связи с эффекторами не имеют и управляют ими через сегментарные центры.

5. В каких отделах центральной нервной системы располагаются сегментарные и надсегментарные центры?

Сегментарные – в спинном мозгу, а также в продолговатом и среднем мозге (ядра черепных нервов). Надсегментарные – в головном мозгу, а также в шейных и верхнегрудных сегментах спинного мозга.

6. Что характерно для спинного мозга в сегментарной иннервации тела организма? Каково биологическое значение этого факта?

Каждый сегмент спинного мозга участвует в чувствительной иннервации трех дерматомов. Имеется дублирование и двигательной иннервации мышц, что повышает надежность регуляторных механизмов.

7. Назовите типы мотонейронов спинного мозга.

Альфа-мотонейроны первого и второго типа, и гамма-мотонейроны.

8. Каково функциональное значение альфа-мотонейронов 1-го и 2-го типов?

Альфа-мотонейроны 1-го типа управляют сократительной функцией белых (быстрых) мышечных волокон; альфа-мотонейроны 2-го типа иннервируют красные (медленные) мышечные волокна.

9. Что иннервируют гамма-мотонейроны и каково функциональное значение этой иннервации?

Гамма-мотонейроны иннервируют интрафузальную мускулатуру, с помощью чего регулируют тонус скелетной (экстрафузальной) мускулатуры.

10. Какие четыре вида чувствительности проводит спинной мозг?

Болевую, тактильную, температурную, проприоцептивную.

11. Назовите пути спинного мозга, проводящие проприоцептивную чувствительность. Укажите их особенности.

Пути Голя и Бурдаха (осознаваемая импульсация), Говерса и Флексига (неосознаваемая импульсация).

12. Какие пути спинного мозга проводят болевую и температурную чувствительность, какие – тактильную чувствительность (прикосновение и давление)?

Латеральный спиноталамический. Передний спиноталамический.

13. Назовите главные нисходящие пути спинного мозга.

Пирамидные кортико-спинальные (латеральный и передний); экстрапирамидные: руброспинальный, вестибулоспинальный, кортико-ретикулоспинальный.

14. На каких нейронах спинного мозга заканчиваются пирамидные и кортико-ретикуло-спинальные нисходящие пути? Укажите значение этих путей.

На альфа- и гаммамотонейронах, на возбуждающих и тормозных вставочных нейронах. Пирамидные пути обеспечивают произвольные движения (особенно движения кистей и пальцев рук), ретикулоспинальные регулируют тонус мышц.

15. На каких нейронах спинного мозга заканчиваются руброспинальные и вестибулоспинальные нисходящие пути? Укажите значение этих путей.

На возбуждающих и тормозных вставочных нейронах. Регуляция тонуса мышц и положения тела в пространстве.

16. В каких сегментах спинного мозга расположены центры симпатической и парасимпатической нервной системы? Парасимпатические центры регуляции каких функций находятся в спинном мозгу?

Симпатические – в тораколюмбальных (8 шейный - 3 поясничный сегменты), парасимпатические – в крестцовом отделе (2 – 4 сегменты). Дефекации, мочеиспускания, эякуляции.

17. В каких сегментах спинного мозга расположены симпатические центры, регулирующие деятельность сердца и диаметр зрачка?

Для сердца – 2 – 3-й грудные сегменты, для зрачка – 8-й шейный и 1-ый грудной сегменты.

18. В каких сегментах спинного мозга находятся симпатические центры, иннервирующие слюнные железы, сосуды, потовые железы, а также гладкую мускулатуру внутренних органов?

Центры слюнных желез – во 2 – 4 грудных сегментах; другие центры расположены сегментарно во всех отделах спинного мозга.

19. Из каких сегментов спинного мозга иннервируются диафрагма и мышцы верхних конечностей?

Диафрагма – из 3 – 4 (иногда и 5-го) шейных, верхние конечности – от 5 – 8 шейных и 1 – 2 грудных сегментов.

20. Укажите сегменты спинного мозга, из которых иннервируются мышцы нижних конечностей?

2 – 5-ый поясничные и 1 – 5-ый крестцовые сегменты.

21. Почему спинальные рефлексы изучают на спинальных животных? Почему перерезку при этом делают ниже 5-го шейного сегмента?

Чтобы исключить влияние вышележащих отделов центральной нервной системы на деятельность спинного мозга. Для сохранения диафрагмального дыхания.

22. Что такое спинальный шок? Какова основная причина возникновения спинального шока?

Резкое угнетение возбудимости и рефлекторной деятельности спинного мозга ниже места его травмы или перерезки. Возникает вследствие выключения активирующего влияния вышележащих отделов ЦНС на спинной мозг.

23. Какова продолжительность спинального шока у лягушки, собаки, человека?

У лягушки – минуты, у собаки – дни, у человека – около двух месяцев.

24. Какие рефлекторные реакции конечностей (по характеру ответной реакции) можно вызвать у спинального животного?

Сгибательные, разгибательные, ритмические, познотонические.

25. Какие рефлексы называют познотоническими?

Рефлексы перераспределения мышечного тонуса, возникающие при изменении положения тела или головы в пространстве.

26. Что такое шагательный рефлекс спинальной собаки и как его вызвать?

Ритмичное сгибание и разгибание конечностей в характерной для шагания последовательности. Вызывается легким надавливанием на подошву стопы спинальной собаки, зафиксированной в станке.

27. Каково состояние тонуса мышц спинального теплокровного животного после исчезновения спинального шока? Объясните его механизм?

Тонус повышенный (гипертонус), рефлекторного происхождения; возникает вследствие возбуждения проприорецепторов в результате их растяжения, спонтанной активности проприорецепторов (мышечных веретен) и действия гамма-мотонейронов, также обладающих спонтанной активностью.

28. Назовите познотонические рефлексы, осуществляемые спинным мозгом. С каких рецепторов и при каких условиях они возникают и что ведет к их возникновению?

Шейные познотонические рефлексы, возникающие с прориорецепторов, шейных мышц при повороте или наклоне головы.

29. Как изменится состояние конечностей животного при запрокидывании головы назад или ее наклоне вперед?

При запрокидывании головы назад передние конечности разгибаются, задние – сгибаются; при наклоне головы вперед передние конечности сгибаются, задние – разгибаются.

30. Нарисуйте схему, отражающую взаимодействие процессов возбуждения и торможения в мотонейронах спинного мозга, в процессе сокращения и расслабления скелетной мышцы у спинального животного.

1 – мышечный рецептор (мышечное веретено); 2 – сухожилия и рецепторы Гольджи; 3 – сегмент спинного мозга; А – мышца расслаблена и растянута, возбуждаются мышечные рецепторы (1); Б – мышца сокращена, укорочена и напряжена – возбуждаются сухожильные рецепторы (2).

––––– импульсация выражена;

– – – – импульсация отсутствует.

31. Какие отделы центральной нервной системы в физиологии относят к стволу головного мозга?

Задний мозг (продолговатый мозг и мост) и средний мозг.

32. Назовите жизненно важные центры продолговатого мозга, регулирующие вегетативные функции.

Дыхательный, сердечно-сосудистый (кровообращения), глотательный.

33. Центры каких защитных рефлексов локализуются в продолговатом мозгу?

Чихания, кашля, мигания, слезотечения, рвоты.

34. Назовите познотонический рефлекс, замыкающийся на уровне продолговатого мозга, укажите его значение и ядра, с помощью которых он осуществляется.

Лабиринтный познотонический рефлекс; его значение – сохранение позы. Вестибулярные ядра.

35. Опишите кратко опыт Магнуса, доказывающий наличие лабиринтного познотонического рефлекса.

Если животное с загипсованной шеей положить на спину, тонус мышц-разгибателей повышается – конечности выпрямляются, после разрушения лабиринтов этот рефлекс исчезает.

36. Что произойдет с мышечным тонусом после перерезки ствола мозга между мостом и средним мозгом? Как называется это состояние?

Резкое повышение тонуса мышц-разгибателей. Децеребрационная ригидность.

37. Чем объясняется возникновение децеребрационной ригидности?

Тем, что к альфа-мотонейронам спинного мозга, иннервирующим мышцы-разгибатели, поступает больше возбуждающих импульсов, нежели тормозящих, вследствие выключения тормозных влияний красного ядра.

38. Назовите главные двигательные и чувствительные ядра среднего мозга.

Двигательные: красное ядро, черная субстанция, ядра глазодвигательного и блокового нервов; чувствительные: первичные слуховые и зрительные центры (ядра четверохолмия).

39. Какова роль красных ядер в регуляции двигательной активности организма?

Регулируют тонус скелетной мускулатуры и обеспечивают сохранение и восстановление нарушенной позы.

40. Тормозят или возбуждают красное ядро и ядро Дейтерса альфа- и гамма-мотонейроны мышц-сгибателей и мышц-разгибателей?

Красное ядро тормозит нейроны мышц-разгибателей, а ядро Дейтерса возбуждает. На нейроны мышц-сгибателей эти ядра оказывают противоположное влияние.

41. Нарисуйте схему, отражающую механизм тормозящего влияния красного ядра на тонус мышц-разгибателей.

Пунктирная линия – перерезка ствола мозга между средним мозгом и мостом; Кр. Ядро – красное ядро. Нейроны спинного мозга: 1 – тормозящий, - и - мотонейроны; 2 – проприорецептор (мышечное веретено); 3 – мышца-разгибатель.

42. Нарисуйте схему, отражающую механизм возбуждающего влияния ядра Дейтерса на тонус мышц-разгибателей.

Д – ядро Дейтерса. Нейроны спинного мозга: 1 – возбуждающий, - и - мотонейроны; 2 – проприорецептор (мышечное веретено); 3 – мышца-разгибатель.

43. Приведите классификацию тонических рефлексов ствола мозга.

Статические (позные и выпрямительные) и статокинетические рефлексы.

44. Что понимают под статическими и статокинетическими рефлексами?

Статические – тонические рефлексы, направленные на поддержание естественной позы в покое; статокинетические – тонические рефлексы, направленные на поддержание позы при перемещении тела в пространстве.

45. Назовите виды статических рефлексов и их рефлексогенные зоны.

Позные и выпрямительные. Рецепторы кожи, мышц шеи и вестибулярного аппарата (отолитовый аппарат).

46. Какие рефлексы называют выпрямительными? Перечислите их.

Рефлексы, обеспечивающие восстановление естественной позы. Выпрямление головы и выпрямление туловища.

47. При возбуждении каких рецепторов и при обязательном участии каких ядер среднего мозга осуществляется выпрямление головы?

Рецепторов кожи, вестибулярного аппарата (отолитовый аппарат) и глаз; красных ядер.

48. При возбуждении каких рецепторов и при обязательном участии каких ядер среднего мозга происходит выпрямление туловища?

Проприорецепторов мышц шеи и кожных рецепторов; красных ядер.

49. Перечислите статокинетические рефлексы. При раздражении каких рецепторов они возникают?

Нистагм головы и глаз, лифтные рефлексы, перераспределение тонуса мышц при прыжках и беге. Вестибуло- и проприорецепторов.

50. В чем заключается ориентировочный рефлекс, может ли он возникать у мезенцефального животного?

В повороте туловища, головы и глаз в сторону звукового или светового раздражителей и в повышении тонуса мышц-сгибателей. Может.

51. При обязательном участии каких ядер и центров ствола мозга осуществляется ориентировочный рефлекс?

Красных ядер, первичных зрительных и первичных слуховых нервных центров, которыми являются соответственно верхние и нижние холмики четверохолмия, ядер 3-ей и 4-ой пары черепных нервов.

52. Перечислите функции черной субстанции.

Координация жевания и глотания, участие в регуляции мышечного тонуса, мелких движений пальцев рук, эмоционального поведения.

53. Что собой представляет ретикулярная формация в структурном отношении? В каких отделах ЦНС она расположена?

Скопление нейронов различных типов и размеров, связанных множеством волокон, идущих в различных направлениях и образующих сеть на всем протяжении ствола мозга, а также в шейных и верхнегрудных сегментах спинного мозга.

54. Откуда ретикулярная формация получает импульсы, поддерживающие и регулирующие ее активность? Являются ли нейроны ретикулярной формации поли- или мономодальными? К каким отделам ЦНС они посылают импульсы?

От всех рецепторов организма и от всех отделов ЦНС. Являются полимодальными, посылают импульсы ко всем отделам ЦНС.

55. Перечислите свойства нейронов ретикулярной формации.

Обладают спонтанной активностью, повышенной возбудимостью, высокой лабильностью (до 1000 гц), высокой чувствительностью к барбитуратам и другим фармакологическим препаратам.

56. Какое регулирующее влияние ретикулярная формация оказывает на все отделы ЦНС? С помощью возбуждающих или тормозящих нейронов это осуществляется?

Регулирует уровень возбудимости и тонус всех отделов ЦНС. С помощью активации тормозящих и возбуждающих нейронов с преобладанием последних.

57. Тормозит или возбуждает ретикулярная формация продолговатого мозга и моста альфа- и гамма-мотонейроны мышц-сгибателей и мышц-разгибателей?

Нейроны мышц-разгибателей ретикулярная формация продолговатого мозга тормозит, а моста – возбуждает. На нейроны мышц-сгибателей эти структуры оказывают противоположное влияние.

58. Нарисуйте схему, отражающую участие ретикулярной формации моста и продолговатого мозга в регуляции тонуса мышц-разгибателей.

РФ – ретикулярная формация моста (1) и продолговатого мозга (2). Нейроны спинного мозга: 3 – возбуждающий, 4 – тормозящий, - и - мотонейроны; 5 – проприорецептор (мышечное веретено);

6 – мышца-разгибатель.

59. Какое состояние и почему возникает у животного после разрушения ретикулярной формации, а также после перерезки афферентных путей, идущих к ней?

Глубокое торможение высших отделов ЦНС вследствие резкого уменьшения восходящей активирующей импульсации.

60. Нарисуйте схему, отражающую механизм возникновения децеребрационной ригидности при перерезке ствола мозга между средним мозгом и мостом.

Пунктирная линия – перерезка ствола мозга между средним мозгом и мостом;

Кр. Ядро – красное ядро; РФ – ретикулярная формация моста (1) и продолговатого мозга (2); Д – ядро Дейтерса. Нейроны спинного мозга: 3 – возбуждающий, 4 – тормозящий, - и - мотонейроны; 5 – проприорецептор (мышечное веретено);

6 – мышца-разгибатель.

1. Опишите сущность и способ вызова выпрямительной реакции туловища. С какого возраста она формируется?

При соприкосновении стоп ребенка с опорой наблюдается выпрямление головы. Эта реакция формируется с конца 1-го месяца.

2. Опишите сущность и способ вызова верхнего рефлекса Ландау, в каком возрасте он формируется?

Ребенок в положении лежа на животе поднимает голову, верхнюю часть туловища, опираясь на плоскость руками, удерживается в этой позе. Этот рефлекс формируется к 4-м месяцам жизни ребенка.

3. Опишите сущность и способ вызова нижнего рефлекса Ландау, в каком возрасте он формируется?

В положении лежа на животе ребенок разгибает и поднимает ноги. Рефлекс формируется к 5-6 месяцам.

4. Опишите сущность и способ вызова рефлекса Кернига, в каком возрасте он исчезает?

У лежащего на спине ребенка сгибают одну ногу в тазобедренном и коленном суставах, а затем пытаются разогнуть ногу в коленном суставе. Рефлекс считается положительным, если это сделать не удается. Рефлекс исчезает после 4-х месяцев жизни.

5. Опишите отличительные особенности ориентировочного рефлекса новорожденного ребенка.

В первые дни жизни на достаточно сильный звук и свет новорожденный вздрагивает и "замирает", но уже через неделю жизни ребенок поворачивает глаза в сторону звука и света.

6. Что лежит в основе механизма развития произвольных двигательных навыков у детей? Какие два основных пути обеспечивают это?

Выработка условнорефлекторных связей между реакциями осязательного, проприоцептивного и зрительного происхождения. Проб и ошибок, подражания.

7. Перечислите двигательные навыки ребенка, которые он приобретает в возрасте от 2-х до 5-ти месяцев.

С 2-х месяцев начинается развитие движений рук в направлении к видимому предмету, поднятие головы в положении на животе; с 3-х месяцев ребенок начинает осваивать ползание; с 4 - 5-месячного возраста развиваются движения переворачивания сначала со спины на живот, затем – с живота на спину.

8. Перечислите двигательные навыки ребенка, которыми он овладевает в возрасте с 5-ти до 9-ти месяцев.

При поддержке под мышки ребенок начинает переступать, встает на четвереньки; свободно проползает большие расстояния, начинает садиться, может вставать, стоять и опускаться, держась руками за предметы.

9. Перечислите двигательные навыки и их особенности, которыми ребенок овладевает при помощи верхних конечностей в возрасте 9-12 месяцев.

Движения рук к предмету становятся прямыми и плавными, наблюдаются хватательные движения вслепую за счет предварительного нацеливания на предмет, появляется различие в действиях правой и левой рук.

10. Опишите процесс обучения ребенка ходьбе, с какого месяца жизни ребенка обычно это начинают, какой момент считают началом самостоятельной ходьбы, в каком возрасте это бывает?

С 5 месяцев ребенок начинает при поддержке под мышки переступать. Переступание совершенствуется к 7-8 месяцам жизни. Началом ходьбы считают день, когда ребенок без посторонней помощи сделает несколько шагов, обычно это бывает в возрасте около года.

11. В каком возрасте у ребенка различия в действиях правой и левой руки приобретают устойчивый характер, что этому способствует?

После первого года жизни. Этому способствуют корригирующие влияния со стороны взрослых в процессе игры, манипуляции с предметами.

12. В каком возрасте ребенок начинает бегать, подпрыгивать на месте? Когда отмечается наиболее высокий темп развития точности и частоты воспроизводимых движений, чем объясняется последнее?

В возрасте 2 – 3 лет и 7 – 12 лет соответственно. Интенсивной двигательной активностью и созреванием ЦНС.

13.Опишите сущность и способ вызова рефлекса обхватывания (Моро), до какого возраста он сохраняется у ребенка?

Отведение рук в стороны и разгибание пальцев с последующим возвращением рук в исходное положение. Рефлекс возникает при сотрясении кроватки, в которой лежит ребенок, при опускании его и поднятии до исходного уровня; при быстром подъеме с положения на спине. Рефлекс сохраняется до 4-х месяцев.

14. Опишите сущность и способ вызова подошвенного рефлекса (Бабинского).

Изолированное тыльное разгибание большого пальца и подошвенное сгибание всех остальных, которые иногда веерообразно расходятся, при раздражении подошвы по наружному краю стопы в направлении от пятки к пальцам.

15. Опишите сущность и способ вызова коленного рефлекса новорожденного, объясните причину его отличия от коленного рефлекса взрослых.

Коленный рефлекс – сгибание (у взрослых разгибание) в коленном суставе при раздражении сухожилия четырехглавой мышцы ниже коленной чашечки. Сгибание является следствием преобладания у новорожденных тонуса мышц-сгибателей.

Занятие 4-е

ПЕРЕДНИЙ МОЗГ. МОЗЖЕЧОК.

ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА

1. Перечислите отделы ЦНС и структурные элементы, составляющие передний мозг.

Промежуточный мозг (таламус, эпиталамус, метаталамус, гипоталамус) и конечный мозг – большие полушария, включающие кору и подкорковые (базальные) ядра.

2. Назовите образования промежуточного мозга. Какой тонус скелетных мышц наблюдается у диэнцефального животного (удалены полушария большого мозга), в чем он выражается?

Таламус, эпиталамус, метаталамус и гипоталамус. Пластический – в способности сохранять любую приданную позу.

3. На какие группы и подгруппы делят ядра таламуса и как они связаны с корой больших полушарий?

Специфические ядра (переключающие и ассоциативные) – связаны с определенными проекционными и ассоциативными полями коры, и неспецифические – посылают аксоны диффузно к коре.

4. Как называют нейроны, посылающие информацию к специфическим (проекционным) ядрам таламуса? Как называют пути, которые образуют их аксоны?

Вторые кондукторные нейроны, их аксоны образуют специфические чувствительные пути.

5. Какова роль таламуса?

В таламусе переключаются все афферентные (чувствительные) пути и перерабатывается поступающая по ним импульсация. Играет важную роль в формировании ощущений.

6. Какие функции выполняют неспецифические ядра таламуса?

Являясь продолжением ретикулярной формации ствола мозга, активируют кору больших полушарий, усиливают ощущения, принимают участие в организации внимания.

7. Назовите структурные образования метаталамуса и их функциональное значение. Специфическими (переключающими, ассоциативными) или неспецифическими ядрами они являются?

Медиальные и латеральные коленчатые тела, являются специфическими переключающими ядрами для слуховых и зрительных путей соответственно.

8. Какие ядра среднего и промежуточного мозга образуют подкорковые зрительные и слуховые центры?

Верхние холмики четверохолмия и латеральные коленчатые тела образуют подкорковые зрительные центры; нижние холмики четверохолмия и медиальные коленчатые тела образуют подкорковые слуховые центры.

9. В осуществлении каких реакций, кроме регуляции функций внутренних органов, принимает участие гипоталамус?

В регуляции сна и бодрствования, возбудимости коры и спинного мозга, в формировании поведенческих реакций (пищевых, половых, нападения, бегства), эмоциональных реакций (ярости, страха, агрессии).

10. Назовите соматосенсорные зоны коры больших полушарий, укажите места их расположения и назначение.

Первая и вторая соматосенсорные зоны. Первая – в задней центральной извилине, вторая расположена вентральнее первой – в сильвиевой борозде. Обе воспринимают импульсацию от разных участков тела.

11. Назовите основные моторные зоны коры больших полушарий и места их расположения.

Главная моторная зона – это передняя центральная извилина; дополнительная двигательная область расположена на медиальной поверхности лобной коры.

12. Что понимают под пирамидной системой? Какова ее функция?

Систему кортико-спинальных путей, формирующих пирамиды продолговатого мозга и связывающих пирамидные клетки коры больших полушарий с интернейронами (в основном), альфа-мотонейронами и с чувствительными релейными нейронами.

13. Что понимают под экстрапирамидной системой?

Систему нервных путей, связывющих моторную кору с нейронами спинного мозга посредством двигательных ядер головного мозга (базальные ганглии, черная субстанция, красное ядро, ретикулярная формация, вестибулярные ядра и мозжечок).

14. Каковы функции экстрапирамидной системы?

Обеспечение непроизвольных движений, участие в произвольных движениях, в регуляции мышечного тонуса, сохранении позы.

15. Какие структуры головного мозга составляют стриопаллидарную систему? Какие реакции возникают в ответ на стимуляцию ее структур?

Полосатое тело (хвостатое ядро и скорлупа) и бледный шар. Поворот головы, туловища, движения конечностей на противоположной раздражению стороне.

16. Перечислите основные функции, в выполнении которых важную роль играет полосатое тело.

1) Сложные двигательные акты, безусловные рефлексы, инстинкты, регуляция тонуса мышц. 2) Условные рефлексы, эмоции. 3) Регуляция вегетативных функций.

17. Каковы функциональные взаимоотношения полосатого тела и бледного шара? Какие двигательные расстройства возникают при повреждении полосатого тела?

Полосатое тело оказывает тормозное влияние на бледный шар. Гиперкинезия (избыточность непроизвольных движений), снижение тонуса мышц (гипотония).

18. Какие двигательные расстройства возникают при повреждении бледного шара?

Гипокинезия (малоподвижность), повышение тонуса мышц (ригидность).

19. Назовите структурные образования, составляющие лимбическую систему.

Обонятельная доля, гиппокамп, зубчатая фасция, поясная и сводчатая извилины, миндалевидное тело, область перегородки, ограда, гипоталамус.

20. Что характерно для распространения возбуждения между отдельными ядрами лимбической системы, а также между лимбической системой и ретикулярной формацией? Чем это обеспечивается?

Циркуляция возбуждений. Обеспечивается короткими и длинными замкнутыми цепями нейронов лимбической системы и двусторонними связями ее с ретикулярной формацией.

21. От каких рецепторов и отделов ЦНС поступают афферентные импульсы к различным образованиям лимбической системы, куда посылает импульсы лимбическая система?

От всех рецепторов организма и всех отделов ЦНС, ко всем структурам ЦНС.

22. Какие влияния оказывает лимбическая система на сердечно-сосудистую, дыхательную и пищеварительную системы? Посредством каких структур осуществляются эти влияния?

Приспособительные регулирующие влияния через гипоталамус и ретикулярную формацию посредством вегетативной нервной системы и эндокринной системы.

23. В процессах кратковременной или долговременной памяти играет важную роль гиппокамп? Какой экспериментальный факт об этом свидетельствует?

В процессах консолидации памяти, т. е. переводе кратковременной памяти в долговременную при удалении гиппокампа имеет место потеря памяти на ближайшие события без существенных изменений памяти на отдаленные события.

24. Приведите экспериментальные доказательства, свидетельствующие о важной роли лимбической системы в видоспецифическом поведении животного и его эмоциональных реакциях.

Двустороннее удаление миндалевидного комплекса исключает агрессию животного, удаление поясной извилины ведет к гиперсексуальности, нарушению поведения, связанного с материнством.

25. Перечислите основные функции лимбической системы.

Играет важную роль в обеспечении гомеостазиса, запуске эмоциональных реакций и инстинктов, становлении условных рефлексов, и в процессах памяти.

26. Какие три отдела мозжечка и их составные элементы выделяют в структурно-функциональном отношении? От каких рецепторов поступают импульсы в мозжечок?

1) Древний мозжечок (клочок, узелок, нижняя часть червя). 2) Старый мозжечок (верхняя часть червя, парафлоккулерный отдел). 3) Новый мозжечок (полушария). От проприо- и вестибулорецепторов, слуховых, зрительных и кожных.

27. С какими отделами ЦНС мозжечок связан с помощью нижних, средних и верхних ножек?

Нижние ножки мозжечка обеспечивают связь с продолговатым мозгом, средние – с мостом, а через мост – с корой больших полушарий, верхние – со средним мозгом.

28. С помощью каких ядер и структур ствола мозга мозжечок реализует свое регулирующее влияние на тонус скелетной мускулатуры и двигательную активность организма? Возбуждающим или тормозным оно является?

С помощью вестибулярных ядер, красного ядра, ретикулярной формации продолговатого мозга и моста, двигательных зон коры большого мозга. Тормозным и возбуждающим, с преобладанием тормозного.

29. Какие структуры мозжечка участвуют в регуляции мышечного тонуса, позы и равновесия?

Преимущественно древний мозжечок (флоккуло-нодулярная доля) и частично старый мозжечок, входящий в медиальную червячную зону.

30. Назовите структуры мозжечка, осуществляющие координацию позы и выполняемого целенаправленного движения.

Старый и новый мозжечок, входящие в промежуточную (околочервячную) зону.

31. Какая структура мозжечка участвует в программировании целенаправленных движений?

Латеральная зона полушарий мозжечка.

32. Какое влияние оказывает мозжечок на гомеостазис, как изменяется гомеостазис при повреждении мозжечка?

Стабилизирующее, при повреждениях мозжечка гомеостазис неустойчив.

33. Какой отдел головного мозга называют высшим вегетативным центром? Что называют тепловым уколом Клода Бернара?

Гипоталамус. Раздражение серого бугра гипоталамуса, вызывающее повышение температуры тела.

34. Какие группы химических веществ (нейросекретов) поступают от гипоталамуса к передней доле гипофиза и каково их значение? Какие гормоны поступают в заднюю долю гипофиза?

К передней доле поступают либерины и статины, т. е. вещества, обеспечивающие регуляцию выработки тропных гормонов гипофиза. В заднюю долю – окситоцин и антидиуретический (вазопрессин) гормоны.

35. Какие рецепторы, воспринимающие отклонения от нормы параметров внутренней среды организма, обнаружены в гипоталамусе?

Осморецепторы, терморецепторы, глюкорецепторы.

36. Центры регуляции каких биологических потребностей обнаружены в гипоталамусе?

Насыщения, голода, жажды, сна, регуляции полового поведения.

37. Какие органы иннервируют симпатическая и парасимпатическая нервные системы?

Симпатическая – универсальна, иннервирует все органы и ткани. Парасимпатическая – все внутренние органы, сосуды ротовой полости слюнных желез и органов малого таза.

38. Где расположены спинномозговые центры симпатической нервной системы?

С 8-го шейного до 3-го поясничного сегмента спинного мозга включительно.

39. В каких отделах ЦНС расположены центры парасимпатической нервной системы?

В среднем и продолговатом мозгу, в крестцовом отделе спинного мозга.

40. Назовите нервы, в составе которых идут парасимпатические волокна?

Глазодвигательный (III), лицевой (VII), языкоглоточный (IХ), блуждающий (Х) и тазовый нервы.

41. Укажите отличия локализации эфферентных и афферентных нейронов в дуге вегетативного и соматического рефлексов.

В дуге вегетативного рефлекса эфферентные нейроны вынесены из ЦНС на периферию, афферентные нейроны располагаются, кроме спинномозговых ганглиев, в экстра- и интрамуральных ганглиях.

42. Назовите виды рефлексов вегетативной нервной системы по уровню замыкания в нервной системе.

Периферические (внутриорганные и внеорганные) и центральные.

43. Нарисуйте схему рефлекторной дуги симпатической нервной системы и обозначьте пять ее звеньев.

1 – рецептор; 2 – афферентный нейрон;

3 – центральный (преганглионарный) нейрон; 4 – ганглионарный нейрон (симпатический ганглий); 5 – эффектор (гладкая мышца).

44. Нарисуйте схему рефлекторной дуги парасимпатической нервной системы и обозначьте пять ее звеньев.

1 – рецептор; 2 – афферентный нейрон;

3 – центральный (преганглионарный) нейрон; 4 – ганглионарный нейрон (парасимпатический ганглий); 5 – эффектор (гладкая мышца).

45. Что называют периферическим рефлексом? Нарисуйте его схему.

Рефлекс, дуга которого замыкается на уровне вегетативных ганглиев.

1 – рецептор; 2 – 4 – ганглионарные нейроны: 2 – афферентный, 3 – вставочный, 4 – эфферентный; 5 – эффектор (например, гладкая мышца).

46. Что характерно для распространения возбуждения в периферическом отделе вегетативной нервной системы?

Малая скорость и генерализованный характер распространения возбуждения.

47. Чем объясняется генерализованный характер распространения возбуждения в периферическом отделе вегетативной нервной системы?

Феноменом мультипликации в вегетативных ганглиях, ветвлением немиелинизированных нервных волокон на периферии, выделением медиатора во многих участках по ходу концевых разветвлений симпатических волокон.

48. Что называют феноменом мультипликации в вегетативных ганглиях? За счет чего осуществляется этот феномен?

Увеличение числа импульсов на выходе из ганглия. За счет ветвления входящих в ганглий аксонов и образования каждым из них синапсов на нескольких ганглионарных нейронах.

49. В чем выражается адаптационно-трофическое действие симпатической нервной системы?

В приспособлении функционального состояния органов и организма в целом к потребностям данного момента путем активации метаболизма.

50. Опишите опыт, доказывающий адаптационно-трофическое влияние симпатической нервной системы на скелетную мышцу (феномен Орбели – Гинецинского)?

Если раздражением двигательного нерва довести мышцу до утомления, после чего, не прекращая раздражать двигательный нерв, присоединить раздражение симпатического нерва, работоспособность мышцы восстанавливается, амплитуда ее сокращений повышается.

51. Нарисуйте кривую, отражающую повышение работоспособности утомленной изолированной икроножной мышцы лягушки при раздражении симпатического нерва (феномен Орбели – Гинецинского).

1 – раздражение симпатического нерва;

2 – раздражение соматического нерва.

52. Кто, когда и в каком опыте открыл химический механизм передачи возбуждения в вегетативных ганглиях?

А. В. Кибяков в 1933 г. в опыте с раздражением преганглионарных симпатических волокон на фоне перфузии симпатического ганглия кошки: действие перфузата на третье веко кошки вызывало отчетливое его сокращение.

53. С помощью какого медиатора и каких химических рецепторов осуществляется передача возбуждения в ганглиях симпатической и парасимпатической нервной системы?

В ганглиях симпатической и парасимпатической нервной системы возбуждение передается с помощью ацетилхолина, действующего на N-холинорецепторы.

54. С помощью каких медиаторов и каких химических рецепторов осуществляется передача эфферентного влияния симпатической и парасимпатической нервной системы на рабочий орган?

В симпатической нервной системе – с помощью катехоламинов (адреналин и норадреналин) и альфа- и бета-аденорецепторов; в парасимпатической – с помощью ацетилхолина и М-холинорецепторов.

55. Нарисуйте схему, отражающую механизм передачи возбуждения в периферических отделах симпатической и парасимпатической нервной системы: нейроны и их медиаторы, пре- и постганглионарные волокна, рецепторы.

Х – холинергический нейрон; А – адренергический нейрон.

56. Как при физической нагрузке изменяется деятельность сердца, желудочно-кишечного тракта и тонус сосудов скелетных мышц?

Работа сердца усиливается, функция желудочно-кишечного тракта тормозится, тонус сосудов скелетных мышц падает – сосуды расширяются.

57. Какие двигательные рефлексы конечностей (по характеру ответной реакции) можно вызвать у спинального животного?

Сгибательные, разгибательные, ритмические, познотонические.

58. Какова выраженность тонуса мышц спинального теплокровного животного после исчезновения спинального шока? Объясните его происхождение.

Повышена. Происхождение рефлекторное – возбуждение проприорецепторов вследствие их растяжения, спонтанной активности и под влиянием импульсации от гамма-мотонейронов, обладающих спонтанной активностью.

59. Нарисуйте схему, объясняющую механизм возникновения децеребрационной ригидности, при перерезке ствола мозга между средним мозгом и мостом.

Пунктирная линия – перерезка ствола мозга между средним мозгом и мостом; Кр. ядро – красное ядро; РФ – ретикулярная формация моста (1) и продолговатого мозга (2); Д – ядро Дейтерса. Нейроны спинного мозга: 3 – возбуждающий, 4 – тормозящий, - и - мотонейроны; 5 – проприорецептор (мышечное веретено);

6 – мышца-разгибатель.

60. Нарисуйте схему, отражающую взаимодействие процессов возбуждения и торможения в -мотонейронах при сокращении и расслаблении скелетной мышцы.

1 – мышечный рецептор (мышечное веретено); 2 – сухожилия и рецепторы Гольджи; 3 – сегмент спинного мозга; А – мышца расслаблена и растянута, возбуждаются мышечные рецепторы (1); Б – мышца сокращена, укорочена и напряжена, возбуждаются сухожильные рецепторы (2). ––––– импульсация выражена; – – – – импульсация отсутствует.

1. Какие особенности вегетативной нервной системы новорожденных свидетельствуют о ее незрелости?

Небольшой мембранный потенциал – 20 мВ (у взрослых 60 – 80 мВ), автоматия симпатических нейронов, более медленное проведение возбуждения, адреноподобное вещество в синапсах ганглиев (вместо ацетилхолина у взрослых), чувствительность одних и тех же нейронов к ацетилхолину и норадреналину.

2. Каковы причины низкого потенциала действия и автоматии у ганглионарных симпатических нейронов незрелой вегетативной нервной системы? Объясните механизм.

Высокая проницаемость для натрия, это же является причиной автоматии: вследствие большой проницаемости мембраны нейрона натрий входит в клетку и вызывает ее деполяризацию; когда последняя достигает критического уровня, возникает потенциал действия.

3. Какой факт свидетельствует, что поступление импульсов и биологически активных веществ из ЦНС к вегетативным ганглиям играет важную роль в созревании их нейронов, в чем проявляется этот факт?

Проявление признаков незрелости нейронов вегетативных ганглиев через 3 – 4 недели после перерезки преганглионарных нервных волокон: уменьшением мембранного потенциала нейронов, восстановлением автоматии и чувствительности одних и тех же нейронов к ацетилхолину и норадреналину.

4. Какие факторы способствуют становлению тонуса блуждающего нерва у детей в онтогенезе?

Увеличение двигательной активности и усиление афферентной импульсации от проприорецепторов, развитие анализаторов и увеличение потока афферентной импульсации от экстеро- и интерорецепторов (хемо- и барорецепторов сосудистых рефлексогенных зон).

5. Какие факты свидетельствуют в пользу важной роли двигательной активности в становлении тонуса блуждающего нерва?

Сохранение высокой частоты сердцебиений у детей с вынужденным ограничением движений и более низкая частота сердцебиений у детей с высокой двигательной активностью.

6. Влияние какого отдела вегетативной нервной системы на функции внутренних органов является преобладающим у детей до 3-х лет и в последующем возрасте.

Влияние симпатической нервной системы, оно сохраняется до 3-летнего возраста. В последующем, в связи с развитием тонуса блуждающего нерва, его влияние в покое становится преобладающим.

7. С какого возраста у детей блуждающий нерв является достаточно зрелым в функциональном отношении, несмотря на отсутствие его тонуса, как это доказать?

С момента рождения. Это доказывается, например, с помощью вызова рефлекса Даньини – Ашнера.

8. Когда начинает формироваться тонус блуждающего нерва? В каком возрасте он достаточно хорошо выражен?

Тонус начинает формироваться с 3-го месяца жизни ребенка, достаточно хорошо выражен на четвертом году жизни.

9. Перечислите рефлексы, которые обычно используются для оценки функционального состояния вегетативной нервной системы у детей.

Глазосердечный (Даньини – Ашнера), дермографический.

10. Как вызывается и в чем проявляется глазосердечный рефлекс? Каков его латентный период, когда он считается положительным и резко положительным?

Давление на боковые поверхности глаз вызывает замедление пульса через 3 – 10 секунд. Считается положительным при замедлении пульса на 4 – 12 уд/мин, резко положительным - более чем на 12 уд/мин.

11. Как вызывается и в чем проявляется дермографический рефлекс? Укажите его латентное время.

Раздражение кожи штрихами вызывает через 5 – 10 с появление белых или красных полос.

12. Опишите сущность и способ вызова рефлекса Кернига. В каком возрасте он исчезает?

У лежащего на спине ребенка сгибают одну ногу в тазобедренном и коленном суставах, а затем пытаются разогнуть ногу в коленном суставе. Рефлекс считается положительным, если это сделать не удается. Рефлекс исчезает на пятом месяце жизни.

13. Опишите сущность и способ вызова верхнего рефлекса Ландау, в каком возрасте он формируется?

Ребенок в положении лежа на животе поднимает голову, верхнюю часть туловища, опираясь на плоскость руками, удерживается в этой позе. Этот рефлекс формируется к 4-м месяцам.

14. Перечислите двигательные навыки ребенка, которыми он овладевает в возрасте от 5-ти до 9 месяцев.

Встает на четвереньки, свободно проползает большие расстояния, начинает садиться; может стоять, вставать и опускаться, держась руками за предметы. При поддержке ребенка в положении стоя (под подмышки) он начинает переступать ногами (ходить).

15. Что лежит в основе механизма развития произвольных двигательных навыков у детей? Какие два основных пути обеспечивают это?

Выработка условнорефлекторных связей между реакциями осязательного и зрительного происхождения. Проб и ошибок, подражания.

Нервная система регулирует деятельность всех органов и систем, обуславливая их функциональное единство и обеспечивает связь организма как целого с внешней средой. Структурной единицей является нервная клетка с отростками – нейрон.

Нейроны проводят электрический импульс друг другу через пузырьковые образования (синапсы), заполненные химическими медиаторами. По структуре нейроны бывают 3-х видов:

  1. чувствительные (со множеством коротких отростков)
  2. вставочные
  3. двигательные (с длинными единичными отростками).

Нерву присущи два физиологических свойства – возбудимость и проводимость. Нервный импульс проводится по отдельным волокнам, изолирован по обе стороны, учитывая электрическую разность потенциалов между возбуждённым участком (отрицательный заряд) и не возбуждённым положительный. При создавшихся условиях электрический ток будет распространятся к соседним участкам скачками без затухания. Скорость проведения импульса зависит от диаметра волокна: чем толще, тем быстрее (до 120 м/с). наиболее медленно проводят (0,5-15 м/с) симпатические волокна к внутренним органам. Передача возбуждения на мышцы осуществляется через двигательные нервные волокна, которые входят в мышцу, теряют миелиновую оболочку и разветвляются. Оканчиваются они синапсами с большим количеством (около 3 млн.) пузырьков наполненных химическим медиатором – ацетилхолином. Между нервным волокном и мышцей имеется синоптическая щель. Нервные импульсы, приходящие к пресинаптической мембране нервного волокна, разрушают пузырьки и выливают ацетилхолин в синаптическую щель. Медиатор попадает на холинорецепторы постсинаптической мембраны мышцы и начинается возбуждение. Это приводит к увеличению проницаемости постсинаптической мембраны к ионам К + и N а + , которые устремляются внутрь мышечного волокна, рождая местный ток, распространяющийся по мышечному волокну. Тем временем в постсинаптической мембране ацетилхолин разрушается, выделяемым здесь ферментом холинэстеразой и постсинаптическая мембрана «успокаивается» и приобретает свой исходный заряд.

Нервная система условно делится на соматическую (произвольную) и вегетативную (автоматическую) нервную систему. Соматическая нервная система осуществляет связь с внешним миром, а вегетативная - поддерживает жизнедеятельность.

В нервной системе выделяют центральную – головной и спинной мозг и периферическую нервную систему – отходящие от них нервы. Периферические нервы бывают двигательными (с телами двигательных нейронов в ЦНС), чувствительными (тела нейронов находятся вне мозга) и смешанные.

Центральная Нервная Система может оказывать 3 рода воздействия на органы:

Пусковое (ускорение, торможение)

Сосудодвигательное (изменение ширины сосудов)

Трофическое (повышение или снижение обмена веществ)

Ответная реакция на раздражение из внешней системы или внутренней среды, осуществляется при участии нервной системы и называется рефлексом. Путь по которому проходит нервный импульс называется рефлекторной дугой. В ней различают 5 звеньев:

1. чувствительный центр

2. чувствительное волокно, проводящее возбуждение к центрам

3. нервный центр

4. двигательное волокно на периферию

5. действующий орган (мышца или железа)

В любом рефлекторном акте присутствуют процессы возбуждения (вызывает деятельность органа или усиливает существующий) и торможения (ослабляет, прекращает деятельность или препятствует его возникновению). Важным фактором координации рефлексов в центрах нервной системы является субординация всех вышележащих центров над нижележащими рефлекторными центрами (кора больших полушарий изменяет активность всех функций организма). В центральной нервной системе под влиянием различных причин, возникает очаг повышенной возбудимости, который обладает свойством усиливать свою активность и тормозить другие нервные центры. Это явление называется доминантой и под влиянием различных инстинктов (голод, жажда, самосохранение и размножение). Каждый рефлекс имеет свою локализацию нервного центра в центральной нервной системе. Также нужна связь в ЦНС. При разрушении нервного центра рефлекс отсутствует.

Классификация рецепторов:

По биологическому значению: пищевые, оборонительные, половые и ориентировочные (ознакомительные).

В зависимости от рабочего органа ответной реакции: двигательные, секреторные, сосудистые.

По местонахождению главного нервного центра: спинальные, (например мочеиспускание); бульбарные (продолговатый мозг) – чихание кашель, рвота; мезенцефальные (средний мозг) - выпрямление тела, ходьба; диэнцефальные (промежуточный мозг) – терморегуляция; корковые – условные (приобретённые) рефлексы.

По продолжительности рефлекса: тонические (прямостояние) и фазовые.

По сложности: простые (расширение зрачка) и сложные (акт пищеварения).

По принципу двигательной иннервации (нервной регуляции): соматические, вегетативные.

По принципу формирования: безусловные (врожденные) и условные (приобретённые).

Через головной мозг осуществляются следующие рефлексы:

1. Пищевые рефлексы: сосание, глотание, пищеварительное сокоотделение

2. Сердечно-сосудистые рефлексы

3. Защитные рефлексы: кашель, чихание, рвота, слезоотделение, мигание

4. Автоматический дыхательный рефлекс

5. Расположены вестибулярные ядра тонуса мышц рефлекса позы

Строение нервной системы.

Спинной мозг.

Спинной мозг лежит в позвоночном канале и представляет собой тяж длиной 41- 45 см., несколько сплющенный спереди назад. Вверху он переходит в головной мозг, а внизу заостряется мозговым корпусом на уровне II поясничного позвонка, от которого отходят атрофированная хвостовая терминальная нить.

Спинкой мозг. Передняя (А) и задняя (Б) поверхности спинного мозга:

1 - мост, 2 - продолговатый мозг, 3 - шейное утолщение, 4 - передняя срединная щель, 5 - пояснично-крестцовое утолщение, 6 - задняя срединная борозда, 7 - задняя латеральная борозда, 8 - мозговой конус, 9 - конечная (терминальная) нить

Поперечный разрез спинного мозга:

1 - мягкая оболочка спинного мозга, 2 - задняя срединная борозда, 3 - задняя промежуточная борозда, 4 - задний корешок (чувствительный), 5 - задняя латеральная борозда, 6 - терминальная зона, 7 - губчатая зона, 8 -студенистое вещество, 9 - задний рог, 10 - боковой рог, 11 - зубчатая связка, 12 - передний рог, 13 - передний корешок (двигательный), 14 - передняя спинно-мозговая артерия, 15 - передняя срединная щель

Спинной мозг разделён вертикально на правою и левую сторону передней срединной щелью, а сзади задней срединной бороздой с рядом проходящими двумя слабовыраженными продольными бороздами. Эти борозды делят каждую сторону на три продольных канатика: передний, средний и боковой (сюда оболочки). В местах выхода нервов на верхние и нижние конечности, спинной мозг имеет два утолщения. В начале внутриутробного периода у зародыша спинной мозг занимает весь позвоночный канал, а потом не успевает за скоростью роста позвоночника. Благодаря такому «восхождению» спинного мозга отходящие от него нервные корешки принимают косое направление, а в поясничном отделе идут внутри позвоночного канала параллельно терминальной нити и образуют пучок – конский хвост.

Внутреннее строение спинного мозга. На разрезе мозга видно, что он состоит из серого вещества (скопление нервных клеток) и белого вещества (нервные волокна, которые собираются в проводящие пути). В центре продольно, проходит центральный канал со спинномозговой жидкостью (ликвором). Внутри заложено серое вещество, которое похоже на бабочку и имеет передние, боковые и задние рога. Передний рог имеет короткую четырёхугольную форму и состоит из клеток двигательных корешков спинного мозга. Задние рога более длинные и узкие и включают в себя клетки, к которым подходят чувствительные волокна задних корешков. Боковой рог образует небольшой треугольный выступ и состоит из клеток вегетативной части нервной системы. Серое вещество окружено белым, которое образовано проводящими путями продольно идущих нервных волокон. Среди них выделяют 3 основных вида путей:

Нисходящие волокна из головного мозга, дающие начало передним двигательным корешкам.

Восходящие волокна к головному мозгу от задних чувствительных корешков.

Волокна, соединяющие различные участки спинного мозга.

Спинной мозг осуществляет за счёт восходящих и нисходящих путей проводниковую функцию между головным и различными отделами спинного мозга, а также является сегментарным рефлекторным центром с рецепторами и рабочими органами. В осуществлении рефлекса участвует определённый сегментарный центр в спинном мозге и два боковых близлежащих сегмента.

Помимо двигательных центров скелетной мускулатуры в спинном мозге находится ряд вегетативных центров. В боковых рогах грудного и верхних сегментах поясничного отделов расположены центры симпатической нервной системы, иннервирующие сердце, сосуды, ЖКТ, скелетные мышцы, потовые железы, расширение зрачка. В крестцовом отделе заложены парасимпатические центры, иннервирующие органы малого таза (рефлекторные центры мочеиспускания, дефекации, эрекции, эякуляции).

Спинной мозг покрыт тремя оболочками: твёрдая оболочка одевает снаружи спинной мозг и между ней и надкостницей позвоночного клапана располагается жировая клетчатка и венозное сплетение. Глубже лежит тонкий листок паутинной оболочки. Мягкая оболочка непосредственно облегает спинной мозг и содержит питающие его сосуды и нервы. Субарахноидальное пространство между мягкой и паутинной оболочкой заполнено спинномозговой жидкостью (ликвором), которая сообщается с ликвором головного мозга. По бокам крепит мозг в его положении зубчатая связка. Спинной мозг кровоснабжается ветвями позвоночных задних рёберных и поясничных артерий.

Периферическая нервная система.

От спинного мозга отходит 31 пара смешанных нервов, которые образуются, которые образуются слиянием передних и задних корешков: 8 пар шейных, 12 пар грудных, 5 пар поясничных, 5 пар крестцовых и 1 пара копчиковых нервов. Они имеют определённые сегменты, местонахождения в спинном мозге. Спинномозговые нервы отходят от сегментов двумя корешками с каждой стороны (передним двигательным и задним чувствительным) и соединяются в один смешанный нерв, образуя тем самым сегментарную пару. На выходе из межпозвоночного отверстия каждый нерв делится на 4 ветви:

Возвращается на мозговые оболочки;

К узлу симпатического ствола;

Заднюю для мышц и кожи затылка и спины. К ним относятся выходящие из шейного отдела подзатылочный и большой затылочный нерв. Чувствительные волокна поясничных и крестцовых нервов образуют верхние и средние нервы ягодицы.

Передние нервы самые мощные и иннервируют переднюю поверхность туловища и конечностей.

Схематическое изображение сплетений спинномозговых нервов:

1 - головной мозг в полости черепа, 2 - шейное сплетение 3 - диафрагмальный нерв, 4 - спинной мозг в позвоночном канале, 5 - диафрагма. 6 - пояс­ничное сплетение, 7 - бедренный нерв. 8 - крестцовое сплетение, 9 - мышечные ветви седалищного нерва, 10 - об­щий малоберцовый нерв, 11 - поверхностный малоберцо­вый нерв, 12 - подкожный нерв голени, 13 - глубокий малоберцовый нерв, 14 - большеберцовый нерв, 15 - седалищный нерв, 16 - сре­динный нерв, 17 - локтевой нерв, 18 - лучевой нерв, 19 - мышечно-кожный нерв, 20 - подмышечный нерв,21 - плечевое сплетение

Они образуют 4 сплетения:

Шейное сплетение начинается с шейных позвонков и на уровне грудино-ключично-сосцевидной мышцы делятся на чувствительные ветви (кожи, уха, шеи и плеча) и двигательные нервы, которые иннервируют мышцы шеи; смешанной ветвью образован диафрагмальный нерв, иннервирующий диафрагму (двигательный) и (чувствительный).

Плечевое сплетение образовано нижними шейными и первым грудным нервом. В подмышечной ямке ниже ключицы начинаются короткие нервы, которые иннервируют мышцы плечевого пояса а также длинные ветви плечевого пояса под ключицей иннервируют руку.

Медиальный кожный нерв плеча

Медиальный кожный нерв предплечья иннервируют кожу соответствующих зон руки.

Мышечно-кожный нерв иннервирует мышцы сгибателей плеча, а также чувствительную ветвь кожи предплечья.

Лучевой нерв иннервирует кожу и мышцы задней поверхности плеча и предплечья, а также кожу большого, указательного и среднего пальцев.

Срединный нерв отдаёт ветви почти всем сгибателям на предплечье и большого пальца, а также иннервирует кожу пальцев, кроме мизинца.

Локтевой нерв иннервирует часть мышц внутренней поверхности предплечья, а также кожу ладони, безымянного и среднего пальца и сгибатели большого пальца.

Передние ветви грудных спинномозговых нервов не образуют сплетения, а самостоятельно формируют межреберные нервы и иннервируют мышцы и кожу грудной клетки и передней брюшной стенки.

Поясничное сплетение образовано поясничными сегментами. Три короткие ветви иннервируют нижние части мышц и кожи живота, наружных половых органов и верхней части бедра.

Длинные ветви переходят на нижнюю конечность.

Латеральный кожный нерв бедра иннервирует его наружную поверхность.

Запирательный нерв на тазобедренном суставе отдаёт ветви приводящим мышцам бедра и коже внутренней поверхности бедра.

Бедренный нерв иннервирует мышцы и кожу передней поверхности бедра, а его кожная ветвь – подкожный нерв – идёт на медиальную поверхность голени и тыл стопы.

Крестцовое сплетение образовано нижними поясничными, крестцовыми и копчиковыми нервами. Выходя из седалищного отверстия, даёт короткие ветви на мышцы и кожу промежности, мышцы таза и длинные ветви ноги.

Задний кожный нерв бедра для ягодичной области и задней поверхности бедра.

* Седалищный нерв в подколенной ямке делится на большеберцовый и малоберцовый нервы, которые разветвляясь образуют двигательные нервы голени и стопы, а также образуют из сплетения кожных ветвей нерв икры.

Головной мозг.

Головной мозг располагается в полости черепа. Его верхняя часть выпуклая и покрыта извилинами двух больших полушарий, разделённых продольной щелью. Основание головного мозга уплощено и соединяется со стволом и мозжечком, а также отходящими 12 парами черепно-мозговых нервов.

Основание головного мозга и места выхода корешков черепных нервов:

1 - обонятельная луковица, 2 - обонятельный тракт, 3 - переднее продырявленное ве­щество, 4 - серый бугор, 5 - зрительный тракт, 6 - сосцевидные тела, 7 - тройничный узел, 8 - заднее Продырявленное пространство, 9 - мост, 10 - мозжечок, 11 - пирамида, 12 - олива, 13 - спннно-мозговой нерв, 14 - подъязычный нерв, 15 - добавочный нерв, 16 - блуждающий нерв, 17 - лзыкоглоточный нерв, 18 - преддверноулитковый нерв, 19 - лицевой нерв, 20 - отводящий нерв, 21 - тройничный нерв, 22 - блоковой нерв, 23 - глазодвигательный нерв, 24 - зрительным нерв, 25 -обонятельная борозда

Головной мозг растёт до 20 лет и набирает различную массу, в среднем у женщин 1245г., у мужчин 1375г. Головной мозг покрыт теми же оболочками, что и спинной мозг: твёрдая оболочка образует надкостницу черепа, в некоторых местах она расщепляется на два листка и образует пазухи с венозной кровью. Твёрдая оболочка образует множество отростков, которые заходят между отростками мозга: так серп большого мозга входит в продольную щель между полушариями, серп мозжечка разделяет полушария мозжечка. Палатка отделяет мозжечок от полушарий, а турецкое седло клиновидной кости с лежащим гипофизом закрыто диафрагмой седла.

Синусы твердой мозговой оболочки:

1 -пещеристый синус, 2 - нижний каменистый синус, 3 - верхний каменистый синус, 4 - сигмовидный синус, 5 - поперечный синус. 6 - затылочный синус, 7 - верхний сагиттальный синус, 8 - прямой синус, 9 - нижний сагиттальный синус

Паутинная оболочка – прозрачная и тонкая лежит на головном мозге. В области углублений головного мозга образуются расширенные участки подпаутинного пространства - цистерны. Наибольшие цистерны находятся между мозжечком и продолговатым мозгом, а также на основании мозга. Мягкая оболочка содержит сосуды и непосредственно покрывает головной мозг, заходя во все щели и борозды. Спинномозговая жидкость (ликвор) образуется в сосудистых сплетениях желудочков (внутримозговые полости). Она циркулирует внутри мозга по желудочкам, снаружи в подпаутинном пространстве и опускается в центральный канал спинного мозга, обеспечивая постоянное внутричерепное давление, защиту и обмен веществ в ЦНС.

Проекция желудочков на поверхность большого мозга:

1 - лобная доля, 2 - центральная борозда, 3 - боковой желудочек, 4 - затылочная доля, 5 - задний рог бокового желудочка, 6 - IV желудочек, 7 - водопровод мозга, 8 - III желудочек, 9 - центральная часть бокового желудочка, 10 - нижний рог бокового желудочка, 11 - передний рог бокового желудочка.

Кровоснабжают мозг позвоночные и сонные артерии, которые образуют передние, средние и задние мозговые артерии, соединяющиеся на основании артериальным (Везилиевым) кругом. Поверхностные вены головного мозга непосредственно впадают в венозные пазухи твёрдой оболочки, а глубокие вены собираются в 3-ем желудочке в самую мощную вену мозга (Галена), которая впадает в прямой синус твёрдой мозговой оболочки.

Артерии головного мозга. Вид снизу (из Р. Д. Синельникова):

1 - передняя соединительная артерия. 2 - передние мозговые артерии, 3 - внутренняя сонная артерия, 4 - средняя мозговая артерия, 5 - задняя соединительная артерия, 6 -задняя мозговая артерия, 7 - базилярная артерия, 8 - позвоночная артерия, 9 - задняя нижняя мозжечковая артерия. 10 - передняя нижняя мозжечковая артерия, 11 - верхняя мозжечковая артерия.

Головной мозг состоит из 5 частей, которые делятся на основные эволюционно древние структуры: продолговатый, задний, средний, промежуточный, а также на эволюционно новую структуру: конечный мозг.

Продолговатый мозг соединяется со спинным мозгом в месте выхода первых спинномозговых нервов. На передней его поверхности видны два продольных пирамиды и лежащие сверху снаружи от них продолговатые оливы. Сзади этих образований продолжается структура спинного мозга, которая переходит на нижние мозжечковые ножки. В продолговатом мозге находятся ядра IX - XII пар черепно-мозговых нервов. Продолговатый мозг выполняет проводниковую связь спинного мозга со всеми отделами головного мозга. Белое вещество головного мозга образовано длинными системами проводящих волокон из и в спинной мозг, а также короткие пути в ствол мозга.

Задний мозг представлен мостом и мозжечком.

Мост снизу граничит с продолговатым, сверху переходит в ножки мозга, а сбоку в средние ножки мозжечка. Спереди находятся собственные скопления серого вещества, а сзади ядра оливы и ретикулярной формации. Здесь же залегают ядра V - VIII ч.м.нервы. Белое вещество моста представлено спереди поперечными волокнами, идущими к мозжечку, а сзади проходят восходящие и нисходящие системы волокон.

Мозжечок располагается напротив. В нём выделяют два полушария с узкими извилинами коры с серым веществом и центральной частью- червем, в глубине которого образуются из скоплений серого вещества ядра мозжечка. Сверху мозжечок переходит в верхние ножки к среднему мозгу, средними соединяется с мостом, а нижними с продолговатым мозгом. Мозжечок участвует в регуляции движений, делая их плавными, точными и является помощником коры головного мозга по управлению скелетной мускулатурой и деятельностью вегетативных органов.

Четвёртый желудочек является полостью продолговатого и заднего мозга, который снизу сообщается с центральным спинномозговым каналом, а сверху переходит в мозговой водопровод среднего мозга.

Средний мозг состоит из ножек мозга и пластинки крыши с двумя верхними холмами зрительного пути и двумя нижними – слухового пути. От них берёт начало двигательный путь, идущий к передним рогам спинного мозга. Полостью среднего мозга является мозговой водопровод, который окружён серым веществом с ядрами III и IV пар ч.м. нервов. Внутри средний мозг имеет три слоя: крышу, покрышку с системами восходящих путей и двумя крупными ядрами (красные и ядра ретикулярной формации), а также ножки мозга (или основание формации). Сверху основания залегает чёрное вещество, а снизу основание образовано волокнами пирамидных путей и путей соединяющих кору больших полушарий с мостом и мозжечком. Средний мозг играет важную роль в регуляции мышечного тонуса и в осуществлении стояния и ходьбы. К красным ядрам подходят нервные волокна от мозжечка, базальных ядер и коры головного мозга и от них направляются двигательные импульсы по берущему начало здесь экстрапирамидному тракту в спинной мозг. Чувствительные ядра четверохолмия выполняют первичные слуховые рефлексы и зрительные (аккомодация).

Промежуточный мозг срастается с полушариями большого мозга и имеет четыре образования и полость III желудочка посередине, который спереди сообщается с 2-мя боковыми желудочками, а сзади переходит в мозговой водопровод. Таламус представлен парными скоплениями серого вещества с тремя группами ядер для объединения обработки и переключения всех чувствительных путей (кроме обонятельного). Существенную роль играет в эмоциональном поведении. Верхний слой белого вещества таламуса связан со всеми двигательными ядрами подкорки – базальные ядра коры головного мозга, гипоталамусом и ядрами среднего и продолговатого мозга.

Таламус и другие части головного мозга на срединном продольном раз­резе головного мозга:

1 - гипоталамус, 2 - полость третьего желудочка, 3 - передняя (белая) спайка, 4 - свод мозга, 5 - мозолистое тело, 6 - межталамическое сращение. 7 - таламус, 8 - эпиталамус, 9 - средний мозг, 10 - мост, 11 - мозжечок, 12 - продолговатый мозг.

В эпиталамусе лежит верхний придаток мозга эпифиз (шишковидное тело) на двух поводках. Метаталамус соединён пучками волокон с пластинкой крыши среднего мозга, в которых лежат ядра, являющиеся рефлекторными центрами зрения и слуха. Гипоталамус включает в себя собственно побугорную область и ряд образований с нейронами, способными выделять нейросекрет, который потом поступает в нижний придаток мозга – гипофиз. Гипоталамус регулирует все вегетативные функции, а также обмен веществ. В передних отделах находятся парасимпатические центры, а в задних симпатические. Гипоталамус имеет центры, регулирующие температуры тела, жажды и голода, страха, удовольствия и не удовольствия. Из переднего отдела гипоталамуса по длинным отросткам нейронов (аксонам) стекают гормоны вагопрессин и окситоцин в накопительную систему задней передней доли гипофиза для поступления в кровь. А из заднего отдела по кровеносным сосудам в долю гипофиза попадают вещества релизинг-факторы, стимулирующие образования гормонов в передней его доли.

Ретикулярная формация.

Сетчатая (ретикулярная) формация состоит из нервных клеток собственно головного мозга и их волокон, со скоплением нейронов в ядре ретикулярной формации. Это густая сеть ветвящихся отростков нейронов специфических ядер ствола головного мозга (продолговатого, среднего и промежуточного) мозга, проводящая определённые виды чувствительности от рецепторов с периферии к стволу мозга и дальше к коре больших полушарий. Кроме того от нейронов ретикулярной формации начинаются неспецифические пути к коре головного мозга, подкорковым ядрам и спинному мозгу. Не имея своей территории, ретикулярная формация является регулятором мышечного тонуса, а также функциональным корректором головного и спинного мозга, оказывая активирующее воздействие с поддерживающим состоянии бодрости и концентрации внимания. Её можно сравнить с ролью регулятора в телевизоре: не давая изображения, может менять освещённость и громкость звука.

Конечный мозг.

Состоит из двух, разделённых полушарий, которые соединяются пластинкой белого вещества мозолистого тела, ниже которого находятся два сообщающихся друг с другом боковых желудочка. Поверхность полушарий полностью повторяет внутреннюю поверхность черепа, имеет сложный рисунок благодаря извилинам и полушариям между ними. Борозды каждого полушария делятся на 5 долей: лобную, теменную, височную, затылочную и скрытую долю. Кора полушарий покрыта серым веществом. Толщиной до 4 мм. причём сверху находятся участки эволюционно более новой коры из 6 слоёв, а под ней лежит новая кора с меньшим количеством слоёв и более простым устройством. Наиболее старым участком коры является рудиментарное образование животных – обонятельный мозг. В месте перехода на нижнюю (базальную) поверхность находится валик гиппокамп, который участвует в образовании стенок боковых желудочков. Внутри полушарий имеются скопления серого вещества в виде базальных ядер. Они являются подкорковыми двигательными центрами. Белое вещество занимает пространство между корой и базальными ядрами. Оно состоит из большого количества волокон, которые делятся на 3 категории:

1. Сочетательные (ассоциативные), соединяющие разные части одного полушария.

2. Спаечные (комиссуральные), соединяющие правое и левое полушарии.

3. Проекционные волокна проводящих путей от полушарий к низким головного и спинного мозга.

Проводящие пути головного и спинного мозга.

Система нервных волокон, проводящих импульсы из различных частей тела к отделам ЦНС называются восходящими (чувствительными) проводящими путями, которые обычно состоят из 3-х нейронов: первый находится всегда вне мозга, находясь в спинномозговых узлах или чувствительных узлах черепных нервов. Системы первых волокон от коры и нижележащих ядер головного мозга через спинной мозг к рабочему органу называются двигательными (нисходящими) проводящими путями. Они образованы из двух нейронов, последний всегда представлен клетками передних рогов спинного мозга или клетками двигательных ядер черепных нервов.

Чувствительные пути (восходящие) . Спинной мозг проводит 4 вида чувствительности: тактильную (прикосновение и давление), температурную, болевую и проприоцептивную (суставно-мышечное чувство положения и движения тела). Основная масса восходящих путей проводит проприоцептивную чувствительность к коре полушарий и в мозжечок.

Эктероцептивные пути:

Латеральный спино-таламический путь - путь болевой и температурной чувствительности. Первые нейроны находятся в спинномозговых узлах, давая периферические отростки в состав спинномозговых нервов и центральные отростки и центральные отростки, которые идут в задние рога спинного мозга (2-й нейрон). На этом участке происходит перекрест и дальше отростки поднимаются по боковому канатику спинного мозга и дальше по направлению к таламусу. Отростки 3-го нейрона в таламусе образуют пучок, идущий к постцентральной извилине больших полушарий. В результате того, что волокна по пути перекрещиваются, импульсы от левой стороны туловища передаются в правое полушарие и наоборот.

Передний спино-таламический путь - путь осязания и давления. Состоит из волокон, проводящих тактильную чувствительность, которые проходят в переднем канатике спинного мозга.

Проприоцептивные пути:

Задний спиномозжечковый путь (Флексига) начинается от нейрона спинномозгового узла (1 нейрон) с периферическим отростком, идущим к мышечно-суставному аппарату, а центральный отросток идёт в составе заднего корешка к заднему рогу спинного мозга (2-й нейрон). Отростки вторых нейронов поднимаются по боковому канатику этой же стороны к клеткам червя мозжечка.

Волокна переднего спиномозжечкового пути (Говерса) образуют перекрёст дважды в спинном мозге и перед входом в червь мозжечка в области среднего мозга.

Проприоцептивный путь к коре больших полушарий представлен двумя пучками: нежный пучок от проприоцепторов нижних конечностей и нижней половине тела и лежит в заднем канатике спинного мозга. Клиновидный пучок примыкает к нему и несёт импульсы верхней половины тела и рук. Второй нейрон лежит в одноименных ядрах продолговатого мозга, где перекрещиваются и собираются в пучок и доходит до таламуса (3-й нейрон). Отростки третьих нейронов направляются в чувствительную и частично-двигательную зону коры.

Двигательные пути (нисходящие).

Пирамидные пути:

Коркового-ядерный путь - управление осознанными движениями головы. Начинается с предцентральной извилины и переходит на двигательные корешки черепно-мозговых нервов с противоположной стороны.

Латеральный и передний корково-спино-мозговые пути - начинаются в предцентральной извилине и после перекреста идут на противоположную сторону в двигательные корешки спино-мозговых нервов. Они производят управление осознанными движениями мышц туловища и конечностей.

Рефлекторный (экстрапирамидный) путь. К нему относятся красноядерный спино-мозговой, который начинается и перекрещивается в среднем мозге и идет в двигательные корешки передних рогов спинного мозга- формируют поддерживание тонуса скелетных мышц и управляют автоматическими привычыми движениями.

Тектоспинальный путь также начинается в среднем мозге и связан со слуховым и зрительным восприятием. Он устанавливает связь четверохолмия со спинным мозгом- передает влияние подкорковых центров зрения и слуха на тонус скелетных мышц, а также формирует защитные рефлексы

Вестибуло-спинальный путь - от ромбовидной ямки стенки четвёртого желудочка продолговатого мозга, связан с поддержанием равновесия тела и головы в прострасве.

Сечато(ретикуло)-спино-мозговой путь начинается из ядер ретикулярной формации, который потом расходится как по своей, так по противоположной стороне спино-мозговых нервов. Он передает импульсы из ствола головного мозга в спинной мозг для поддержания тонуса скелетных мышц. Регулирует состояние сприно-мозговых вегетативных центров.

Двигательные зоны коры головного мозга находятся в предцентральной извилине, где величина зоны пропорциональна не массе мышц части тела, а её точности движений. Особенно велика зона управления движениями кисти руки, языка и мимической мускулатурой лица. Путь импульсов производных движений от коры к двигательным нейронам противоположной стороны тела называется пирамидным путём.

Чувствительные зоны находятся в различных участках коры: затылочная зона, связана со зрением, а височные со слухом, кожная чувствительность проецируется в постцентральной зоне. Величина отдельных участков не одинакова: проекция кожи руки занимает в коре большую площадь, чем проекция поверхности туловища. Суставно-мышечная чувствительность проецируется в постцентральную и предцентральную извилины. Обонятельная зона находится на основании мозга, а проекция вкусового анализатора находится в нижней части постцентральной извилины.

Лимбическая система состоит из образований конечного мозга (поясная извилина, гиппокамп, базальные ядра) и имеет широкие связи со всеми областями головного мозга, ретикулярной формации, гипоталамусом. Она обеспечивает высший контроль всех вегетативных функций (сердечно-сосудистой, дыхательной, пищеварительной, обмена веществ и энергии), а также формирует эмоции и мотивацию.

Ассоциативные зоны занимают остальную поверхность и осуществляют связь между различными областями коры, объединяя все притекающие в кору импульсы в целостные акты научения (чтение, письмо, речь, логическое мышление, память) и обеспечивая возможность адекватной реакции поведения.

Черепно- мозговые нервы:

От головного мозга отходят 12 пар черепно-мозговых нервов. В отличие от спинномозговых, часть черепных нервов двигательные (III , IV , VI, VI, XI , XII пары), часть чувствительные (I , II , VIII пары), остальные смешанные (V, VII, IX, X). В черепных нервах содержатся также парасимпатические волокна для гладких мышц и желез (III , VII, IX, X пары).

I. Пара (обонятельный нерв ) – представлена отростками обонятельных клеток, верхнего носового прохода, которые образуют обонятельную луковицу в решетчатой кости. От этого второго нейрона импульсы по обонятельному тракту поступают к коре полушарий.

II. Пара (зрительный нерв) образован отростками нервных клеток сетчатки глаза, далее впереди турецкого седла клиновидной кости образует неполный перекрёст зрительных нервов и переходит в два зрительных тракта направляющихся к подкорковым зрительным центра таламуса и среднего мозга.

III. Пара (глазодвигательный ) двигательный с примесью парасимпатических волокон, начинается со среднего мозга, проходит глазницу и иннервирует пять мышц глазного яблока из шести, а также парасимпатически иннервирует мышцу, суживающую зрачок и ресничную мышцу.

IV. Пара (блоковидный ) двигательный, начинается со среднего мозга и иннервирует верхнюю косую мышцу глаза.

V. Пара (тройничный нерв) смешанный: иннервирует кожу лица и слизистых, является основным чувствительным нервом головы. Двигательные нервы иннервируют жевательные и мышцы рта. Ядра тройничного нерва находятся в мосте, откуда выходят два корешка (двигательный и чувствительный), образующие узел тройничного нерва. Периферические отростки образуют три ветви: глазной нерв, верхнечелюстной нерв и нижнечелюстной нерв. Первые две ветви являются чисто чувствительными, а в состав третьей входят ещё и двигательные волокна.

VI. Пара (отводящий нерв ) двигательный, начинается с моста и иннервирует наружную, прямую мышцу глаза.

VII. Пара (лицевой нерв) двигательный, иннервирует мимические мышцы лица и шеи. Начинается в покрышке моста вместе с промежуточным нервом, который иннервирует сосочки языка и слюнные железы. Во внутреннем слуховом проходе они соединяются, где лицевой нерв отдаёт большой каменистый нерв и барабанную струну.

VIII Пара (преддверно-улитковый нерв) складывается из улитковой части, проводящей слуховые ощущения внутреннего уха, и преддверной части лабиринта уха. Соединяясь они входят к ядрам моста на границе с продолговатым мозгом.

IX. Пара (языкоглоточный ) содержит двигательные, чувствительные и парасимпатические волокна. Его ядра лежат в продолговатом мозге. В области яремного отверстия затылочной кости образует два узла чувствительных ответвлений к задней части языка и глотки. Парасимпатические волокна являются секреторными волокнами околоушной железы, а двигательные волокна участвуют в иннервации мышц глотки.

X. Пара (блуждающий ) самый длинный черепно-мозговой нерв, смешанный начинается в продолговатом мозге и своими ветвями иннервирует органы дыхания, проходит через диафрагму и образует чревное сплетение с ветвями к печени, поджелудочной железе, почкам, доходя до нисходящей ободочной кишки. Парасимпатические волокна иннервируют гладкую мускулатуру внутренних органов сердце и желёз. Двигательные волокна иннервируют скелетные мышцы глотки, мягкого нёба, и гортани.

XI. Пара (добавочный) начинается в продолговатом мозге, двигательными волокнами иннервирует грудино-ключично-сосцевидную мышцу шеи и трапециевидную мышцу

XII. Пара (подъязычный) из продолговатого мозга управляет движением мышц языка.

Вегетативная нервная система.

Единая нервная система условно подразделяется на две части: соматическая, иннервирующая только скелетную мускулатуру и вегетативную, иннервирующую весь организм в целом. Координация моторных и вегетативных функций организма осуществляется лимбической системой и лобными долями коры больших полушарий. Вегетативные нервные волокна выходят лишь из нескольких участков головного и спинного мозга, идут в составе соматических нервов и обязательно образуют вегетативные узлы, от которых отходят послеузловые участки рефлекторной дуги на периферию. Вегетативная нервная система оказывает на все органы три рода воздействий: функциональное (ускорение или замедление), трофическое (обмен веществ) и сосудодвигательное (гуморальная регуляция и гомеостаз)

Вегетативная нервная система состоит из двух отделов: симпатического и парасимпатического.

Схема строения вегетативной (автономной) нервной системы. Парасимпатическая (А) и симпатическая (Б) часть:

1 - верхний шейный узел симпатического стоила, 2 - боковой рог спинного мозга, 3 - верх­ний шейный сердечный нерв, 4 - грудные сердечные и легочные нервы, 5 - большой внут­ренностный нерв, 6 - чревное сплетение, 7 - нижнее брыжеечное сплетение, 8 - верхнее и нижнее подчревные сплетения, 9- малый внутренностный нерв, 10- поясничные внут­ренностные нервы, 11 - крестцовые внутренностные нервы, 12- крестцовые парасимпатические ядра, 13 - тазовые внутренностные нервы, 14 - тазовые (парасимпатические) узлы, 15 - парасимпатические узлы (в составе органных сплетений), 16 - блуждающий нерв, 17 - ушной (парасимпатический) узел, 18 - подчелюстной (парасимпатический) узел, 19 - крыло небный (парасимпатический) узел, 20 - ресничный (парасимпатический) узел, 21 - дорзальное ядро блуждающего нерва, 22 - нижнее слюноотделительное ядро, 23 - верхнее слюноотделительное ядро, 24 - добавочное ядро глазодвигательного нерва. Стрелками показаны пути нервных импульсов к органам

Симпатическая нервная система . Центральный отдел образован клетками боковых рогов спинного мозга на уровне всех грудных и верхних трёх поясничных сегментов. Симпатические нервные волокна выходят из спинного мозга в составе передних корешков спино-мозговых нервов и образуют симпатические стволы (правый и левый). Дальше каждый нерв через белую соединительную ветвь соединяется с соответствующим узлом (ганглием). Нервные узлы подразделяются на две группы: по бокам от позвоночника околопозвоночные с правым и левым симпатическим стволом и предпозвоночные, которые лежат в грудной и брюшной полости. После узлов постганглионарные серые соединительные ветви идут к спинномозговым нервам, симпатические волокна которых образуют сплетения по ходу артерий, питающих орган.

В симпатическом стволе различают различные отделы:

Шейный отдел состоит из трёх узлов с отходящими ветвями, иннервирующими органы головы, шеи и сердца.

Грудной отдел состоит из 10-12 узлов лежащих впереди шеек рёбер и отходящих ветвей к аорте, сердцу, лёгким пищеводу, образующие органные сплетения. Наиболее крупные большие и малые чревные нервы проходят через диафрагму в брюшную полость к солнечному (чревному) сплетению преганглионарными волокнами чревных узлов.

Поясничный отдел состоит из 3-5 узлов с ветвями, образующими сплетения брюшной полости и таза.

Крестцовый отдел состоит из 4 узлов на передней поверхности крестца. Внизу цепочки узлов правого и левого симпатических стволов соединяются в одном копчиковом узле. Все эти образования объединяются под названием тазового отдела симпатических стволов, участвуют в образовании сплетений таза.

Парасимпатическая нервная система. Центральные отделы находятся в головном мозге, особое значение имеют гипоталамическая область и кора больших полушарий мозга, а также в крестцовых сегментах спинного мозга. В среднем мозге лежит ядро Якубовича отростки входят в глазодвигательный нерв, который переключается в ресничном узле границы и иннервирует ресничную мышцу суживающую зрачок. В ромбовидной ямке лежит верхнее слюноотдельное ядро, отростки входят в тройничный, а затем в лицевой нерв. Образуют два узла на периферии: крылонёбный узел, иннервирующий своими стволами слёзные железы и железы носовой и ротовой полости, и подчелюстной узел, поднижнечелюстной и подъязычной и подъязычной желез. Нижнее слюноотделительное ядро проникает отростками в языкоглоточный нерв и переключается в ушном узле и даёт начало «секреторным» волокнам околоушной железы. Самое большое количество парасимпатических волокон проходит в составе блуждающего нерва, начинаясь из дорсального ядра и иннервируя все органы шеи, грудной и брюшной полости до поперечной ободочной кишки включительно. Парасимпатическая иннервация нисходящей и ободочной кишки, а также всех органов малого таза осуществляется тазовыми нервами крестцового отдела спинного мозга. Они участвуют в образовании вегетативных нервных сплетений и переключаются в узлах сплетений тазовых органов.

Волокна образуют с симпатическими отростками сплетения, которые входят во внутренние органы. Переключаются волокна блуждающих нервов в узлах, расположенных в стенках органов. Кроме того парасимпатические и симпатические волокна образуют крупные смешанные сплетения, которые состоят из множества скоплений узлов. Самым крупным сплетением брюшной полости является чревное (солнечное) сплетение откуда постгантлионарные ветви образуют сплетения на сосуды к органам. По брюшной аорте вниз спускается другое мощное вегетативное сплетение: верхнее подчревное сплетение, которое опускаясь в малый таз образует правое и левое подчревное сплетение. В составе этих сплетений проходят и чувствительные волокна от внутренних органов.

Ну Чё, мозги не вспухли? – спросил Янь и превратился в чайник с дребезжащей крышкой от выходящего пара.

Ну да, запарил ты меня - сказал Яй и почесал затылок – хотя, в основном всё понятно.

Молодец!!! Ты заслужил медаль, сказал Янь и повесил на шею Яю блестящий кружок.

Ух ты! Какая блестящая и написано чётко «Самому великому умнику всех времён и народов». Вот спасибо? И Чё мне с ней делать.

А ты её понюхай.

Почему то шоколадом пахнет? А-а-а, это конфета такая! Сказал Яй и развернул фольгу.

Покушай пока, сладкое для работы мозга полезно, а я тебе еще интересную штуку расскажу: вот ты видел эту медальку, трогал её руками, нюхал её, а сейчас слышишь, как она хрустит тебя во рту каким частями тела?

Ну многими всякими.

Так вот все они называются органами чувств, которые помогают телу ориентироваться в окружающей среде и использовать его в своих нуждах.

Человека выступает своеобразным координатором в нашем организме. Она передаёт команды от мозга мускулатуре, органам, тканям и обрабатывает сигналы, идущие от них. В качестве своеобразного носителя данных используется нервный импульс. Что он собой представляет? С какой скоростью работает? На эти, а также на ряд других вопросов можно будет найти ответ в этой статье.

Чем является нервный импульс?

Так называют волну возбуждения, что распространяется по волокнам как ответ на раздражение нейронов. Благодаря этому механизму обеспечивается передача информации от различных рецепторов к центральной нервной системе. А от неё, в свою очередь, к разным органам (мышцы и железы). А что же этот процесс являет собой на физиологическом уровне? Механизм передачи нервного импульса заключается в том, что мембраны нейронов могут менять свой электрохимический потенциал. И интересующий нас процесс совершается в области синапсов. Скорость нервного импульса может меняться в рамках от 3 до 12 метров за секунду. Более детально о ней, а также о факторах, что на неё влияют, мы ещё поговорим.

Исследование строения и работы

Впервые прохождение нервного импульса было продемонстрировано немецкими учеными Э. Герингом и Г. Гельмгольцем на примере лягушки. Тогда же и было установлено, что биоэлектрический сигнал распространяется с указанной ранее скоростью. Вообще, такое является возможным благодаря особенному построению В некотором роде они напоминают электрический кабель. Так, если проводить параллели с ним, то проводниками являются аксоны, а изоляторами - их миелиновые оболочки (они являют собой мембрану шванновской клетки, которая намотана в несколько слоев). Причем скорость нервного импульса зависит в первую очередь от диаметра волокон. Вторым по важности считается качество электрической изоляции. Кстати, в качестве материала организмом используется липопротеид миелин, который обладает свойствами диэлектрика. При прочих равных условиях, чем больше будет его слой, тем быстрее будут проходить нервные импульсы. Даже на данный момент нельзя сказать, что эта система полноценно исследована. Многое, что относится к нервам и импульсам, ещё остаётся загадкой и предметом исследования.

Особенности строения и функционирования

Если говорить про путь нервного импульса, то необходимо отметить, что волокно покрывается не по всей своей длине. Особенности построения таковы, что сложившуюся ситуацию лучше всего будет сравнить с созданием изолирующих керамических муфт, что плотно нанизываются на стержень электрического кабеля (хотя в данном случае на аксон). Как результат - есть небольшие неизолированные электрические участки, с которых ионный ток может спокойно вытечь из аксона в окружающую среду (или наоборот). При этом раздражается мембрана. Вследствие этого вызывается генерация в участках, что не изолированы. Этот процесс называется перехватом Ранвье. Наличие такого механизма позволяет сделать так, чтобы нервный импульс распространялся значительно быстрее. Давайте об этом поговорим на примерах. Так, скорость проведения нервного импульса в толстом миелинизированном волокне, диаметр которого колеблется в рамках 10-20 микрон, составляет 70-120 метров за секунду. Тогда как у тех, у кого неоптимальная структура, этот показатель меньше в 60 раз!

Где они создаются?

Нервные импульсы возникают в нейронах. Возможность создания таких «посланий» является одним из основных их свойств. Нервный импульс обеспечивает быстрое распространение однотипных сигналов по аксонам на большое расстояние. Поэтому это самое важное средство организма для обмена информацией в нём. Данные о раздражении передаются с помощью изменения частоты их следования. Здесь работает сложная система периодики, которая может насчитывать сотни нервных импульсов в одну секунду. По несколько подобному принципу, хотя и значительно усложненному, работает компьютерная электроника. Так, когда нервные импульсы возникают в нейронах, то они кодируются определённым образом, а только потом уже передаются. При этом информация группируется в специальные «пачки», которые имеют разное число и характер следования. Всё это, сложенное вместе, и составляет основу для ритмической электрической активности нашего мозга, что можно зарегистрировать благодаря электроэнцефалограмме.

Типы клеток

Говоря про последовательность прохождения нервного импульса, нельзя обойти вниманием (нейроны), по которым и происходит передача электрических сигналов. Так, благодаря им обмениваются информацией разные части нашего организма. В зависимости от их структуры и функционала выделяют три типа:

  1. Рецепторные (чувствительные). Ими кодируются и превращаются в нервные импульсы все температурные, химические, звуковые, механические и световые раздражители.
  2. Вставочные (также называются кондукторными или замыкательными). Они служат для того, чтобы перерабатывать и переключать импульсы. Наибольшее их число находится в головном и спинном мозге человека.
  3. Эффекторные (двигательные). Они получают команды от центральной нервной системы на то, чтобы были совершены определённые действия (при ярком солнце закрыть рукой глаза и так далее).

Каждый нейрон имеет тело клетки и отросток. Путь нервного импульса по телу начинается именно с последнего. Отростки бывают двух типов:

  1. Дендриты. На них возложена функция восприятия раздражения расположенных на них рецепторов.
  2. Аксоны. Благодаря им нервные импульсы передаются от клеток к рабочему органу.

Говоря про проведение нервного импульса клетками, сложно не рассказать об одном интересном моменте. Так, когда они находятся в покое, то, скажем так, натриево-калиевый насос занимается перемещением ионов таким образом, чтобы достичь эффекта пресной воды внутри и соленой внешне. Благодаря получаемому дисбалансу разницы потенциалов на мембране можно наблюдать до 70 милливольт. Для сравнения - это 5% от обычных Но как только меняется состояние клетки, то получившееся равновесие нарушается, и ионы начинают меняться местами. Так происходит, когда через неё проходит путь нервного импульса. Благодаря активному действию ионов это действие и называют ещё потенциалом действия. Когда он достигает определённого показателя, то начинаются обратные процессы, и клетка достигает состояния покоя.

О потенциале действия

Говоря про преобразование нервного импульса и его распространение, следует отметить, что оно могло бы составлять жалкие миллиметры в секунду. Тогда бы сигналы от руки до мозга доходили бы за минуты, что явно нехорошо. Вот тут и играет свою роль в усилении потенциала действия рассмотренная ранее оболочка из миелина. А все её «пропуски» размещены таким образом, чтобы они только позитивно сказывались на скорости передачи сигналов. Так, когда импульсом достигается конец основной части одного тела аксона, то он передаётся либо следующей клетке, либо (если говорить о мозге) многочисленным ответвлениям нейронов. Вот в последних случаях работает немного другой принцип.

Как всё работает в мозгу?

Давайте поговорим, какая передаточная последовательность нервного импульса работает в наиболее важных частях нашей ЦНС. Здесь нейроны от своих соседей отделяются небольшими щелями, что называются синапсами. Потенциал действия не может переходить через них, поэтому он ищет иной способ, чтобы попасть к следующей нервной клетке. На конце каждого отростка есть небольшие мешочки, что называются пресинаптическими пузырьками. В каждом из них имеются особые соединения - нейромедиаторы. Когда к ним поступает потенциал действия, то высвобождаются из мешочков молекулы. Они пересекают синапс и присоединяются к особенным молекулярным рецепторам, что расположены на мембране. При этом нарушается равновесия и, вероятно, появляется новый потенциал действия. Достоверно это ещё не известно, нейрофизиологи занимаются изучениями вопроса и по сей день.

Работа нейромедиаторов

Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:

  1. Они будут диффундированы.
  2. Подвергнутся химическому расщеплению.
  3. Вернутся назад в свои пузырьки (это называется обратным захватом).

В конце 20-го века сделали поразительное открытие. Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом. Так, к примеру, ряд антидепрессантов вроде "Прозака" блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.

Сейчас исследователи, которые изучают пограничные состояния человеческой психики, пробуют разобраться, как же это всё влияет на рассудок человека. Ну а пока же у нас нет ответа на такой фундаментальный вопрос: что же заставляет нейрон создавать потенциал действия? Пока механизм «запуска» этой клетки для нас является секретом. Особенно интересным с точки зрения данной загадки является работа нейронов главного мозга.

Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп. На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение - необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека. Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.

Некоторые теоретические особенности

В статье «нервный импульс» и «потенциал действия» использовались в качестве синонимов. Теоретически это верно, хотя в некоторых случаях необходимо учитывать некоторые особенности. Так, если вдаваться в детали, то потенциал действия является только частью нервного импульса. При детализированном рассмотрении ученых книг можно узнать, что так называют только изменение заряда мембраны с положительного на отрицательный, и наоборот. Тогда как под нервным импульсом понимают сложный структурно-электрохимический процесс. Он распространяется по мембране нейрона как бегущая волна изменений. Потенциал действия - всего лишь электрический компонент в составе нервного импульса. Он характеризирует изменения, что происходят с зарядом локального участка мембраны.

Где же создаются нервные импульсы?

Откуда они начинают свой путь? Ответ на этот вопрос может дать любой студент, который прилежно изучал физиологию возбуждения. Есть четыре варианта:

  1. Рецепторное окончание дендрита. Если оно есть (что не факт), то возможным является наличие адекватного раздражителя, что создаст сначала генераторный потенциал, а потом уже и нервный импульс. Подобным образом работают болевые рецепторы.
  2. Мембрана возбуждающего синапса. Как правило, такое возможно только при наличии сильного раздражения или их суммирования.
  3. Триггерная зона дентрида. В этом случае локальные возбуждающие постсинаптические потенциалы формируются как ответ на раздражитель. Если первый перехват Ранвье миелинизирован, то они на нём суммируются. Благодаря наличию там участка мембраны, которая обладает повышенной чувствительностью, здесь возникает нервный импульс.
  4. Аксонный холмик. Так называют место, где начинается аксон. Холмик - это наиболее частый создать импульсов на нейроне. Во всех остальных местах, которые рассматривались ранее, их возникновение гораздо менее вероятное. Это происходит из-за того, что здесь мембрана имеет повышенную чувствительность, а также пониженный Поэтому, когда начинается суммирование многочисленных возбуждающих постсинаптических потенциалов, то раньше всего на них реагирует холмик.

Пример распространяющегося возбуждения

Рассказ медицинскими терминами может вызвать непонимание отдельных моментов. Чтобы устранить это, стоит кратко пройтись по изложенным знаниям. В качестве примера возьмем пожар.

Вспомните сводки из новостей прошлого лета (также это скоро можно будет услышать опять). Пожар распространяется! При этом деревья и кустарники, которые горят, остаются на своих местах. А вот фронт огня идёт всё дальше от места, где был очаг возгорания. Аналогичным образом работает нервная система.

Часто бывает необходимо успокоить начавшееся возбуждение нервной системы. Но это не так легко сделать, как и в случае с огнем. Для этого совершают искусственное вмешательство в работу нейрона (в лечебных целях) или используют различные физиологические средства. Это можно сравнить с заливанием пожара водой.

Нервная система подразделяется на центральную (мозг) и периферическую (периферические нервы и ганглии). Центральная нервная система (ЦНС) воспринимает информацию от рецепторов, анализирует ее и дает адекватную ситуации команду исполнительным органам. Функциональной единицей нервной системы является нейрон. В нем различают (рис. 6.) тело (сому ) с крупным ядром и отростки (дендриты и аксон ). Главная функция аксона - проведение нервных импульсов от тела. Дендриты проводят импульсы к соме. По чувствительным (сенсорным) нейронам импульсы передаются от рецепторов, а по эфферентным - от ЦНС к эффекторам. Большинство нейронов в ЦНС – вставочные (анализируют и хранят информацию, а также формируют команды).

Рис. 6. Схема строения нейрона.

Деятельность ЦНС имеет рефлекторную природу. Рефлекс - это ответная реакция организма на раздражение, осуществляемая при участии ЦНС.

Рефлексы классифицируют по биологическому значению (ориентировочные, оборонительные, пищевые и т.д.), расположению рецепторов (экстероцептивные - вызываемые раздражением поверхности тела, интероцептивные - вызываемые раздражением внутренних органов и сосудов; проприоцептивные - возникающие при раздражении рецепторов, находящихся в мышцах, сухожилиях и связках), в зависимости от органов, участвующих в формировании ответной реакции (двигательные, секреторные, сосудистые и др.), в зависимости от того, какие отделы мозга необходимы для осуществления данного рефлекса (спинальные, для которых достаточно нейронов спинного мозга; бульбарные - возникают при участии продолговатого мозга; мезэнцефальные - средний мозг; диэнцефальные - промежуточный мозг; кортикальные - нейроны коры головного мозга). Однако в большинстве рефлекторных актов участвуют практически все отделы ЦНС. Рефлексы также делят на безусловные (врожденные) и условные (приобретенные). Материальным субстратом рефлекса является рефлекторная дуга - нейронная цепь, по которой проходит импульс от рецептивного поля (участка тела, раздражение которого вызывает определенный рефлекс) к исполнительному органу. В состав классической рефлекторной дуги входят: 1) рецептор; 2) чувствительное волокно; 3) нервный центр (объединение вставочных нейронов, обеспечивающее регуляцию определенной функции); 4) эфферентное нервное волокно.

Для нервных центров характерны следующие свойства :

Одностороннее проведение возбуждения (от чувствительного нейрона к эфферентному).

Более медленное проведение возбуждения по сравнению с нервными волокнами (большая часть времени тратится на проведение возбуждения в химических синапсах - в каждом по 1,5-2 мс).

Суммирование афферентных импульсов (проявляется усилением рефлекса).

Конвергенция - несколько клеток могут передавать импульсы к одному нейрону.

Иррадиация - один нейрон может влиять на множество нервных клеток.

Окклюзия (закупорка) и облегчение. При окклюзии количество возбужденных нейронов при одновременном раздражении двух нервных центров меньше, чем сумма возбужденных нейронов при раздражении каждого центра в отдельности. Облегчение характеризуется противоположным эффектом.

Трансформация ритма . Частота импульсов на входе в нервный центр и выходе из него обычно не совпадает.

П оследействие - возбуждение может сохраняться после прекращения раздражения.

Высокая чувствительность к недостатку кислорода и ядам .

Низкая функциональная подвижность и высокая утомляемость .

Посттетаническая потенциация - усиление рефлекторного ответа после длительного раздражения центра.

Тонус – даже при отсутствии раздражений многие центры генерируют импульсы.

Пластичность - способны изменять собственное функциональное назначение.

К основным принципам координации работы нервных центров относятся :

Иррадиация - сильное и длительное раздражение рецептора, может вызвать возбуждение большего числа нервных центров (например, если слабо раздражать одну конечность, то сокращается только она, если же раздражение усилить, то сокращаются обе конечности).

Принцип общего конечного пути - импульсы, приходящие в ЦНС по разным волокнам, могут сходиться к одним нейронам (например, мотонейроны дыхательной мускулатуры участвуют в дыхании, чихании и кашле).

Принцип доминанты (открыт А.А. Ухтомским) – один нервный центр может подчинять себе деятельность всей нервной системы и определять выбор приспособительной реакции.

Принцип обратной связи - она позволяет соотнести изменения параметров системы с ее работой.

Принцип реципрокности - отражает отношения противоположных по функции центров (например, вдох и выдох) и заключается в том, что возбуждение одного из них, тормозит другой.

Принцип субординации (соподчинения) - регуляция сосредоточена в высших отделах ЦНС, а главной является кора больших полушарий.

Принцип компенсации функций - функции поврежденных центров могут выполнять другие структуры мозга.

В нервной системе постоянно взаимодействуют процессы возбуждения и торможения. Возбуждение вызывает рефлекторные реакции, а торможение приспособливает их силу и скорость к имеющимся потребностям.

Торможение в ЦНС открыто И.М.Сеченовым. Несколько позднее Гольц показал, что торможение может вызвать и сильное возбуждение.

Различают следующие виды центрального торможения:

Постсинаптическое (основной вид торможения) - заключается в том, что выделяемый тормозной медиатор гиперполяризует постсинаптическую мембрану, что снижает возбудимость нейрона.

Пресинаптическое - локализуется в отростках возбуждающего нейрона.

Поступательное - обусловлено тем, что на пути следования возбуждения встречается тормозной нейрон.

Возвратное - осуществляется вставочными тормозными клетками.

Пессимальное - связано со стойкой деполяризацией постсинаптической мембраны при частом или длительном раздражении.

Торможение вслед за возбуждением - если после стимуляции на нейроне развивается гиперполяризация то новый обычный по силе импульс не вызывает возбуждения.

Реципрокное торможение - обеспечивает согласованную работу структур-антагонистов, например, мышц-сгибателей и разгибателей.

ЧАСТНАЯ ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Центральная нервная система состоит из головного и спинного мозга.

Спинной мозг располагается в позвоночном канале и состоит из сегментов. Один сегмент иннервирует один свой и два соседних метамера тела. Поэтому поражение одного сегмента приводит к снижению чувствительности в них, а полная ее потеря наблюдается только при повреждении не менее двух соседних сегментов. Каждый из них имеет задние корешки, белое вещество, серое вещество и передние корешки (рис. 7.).

В задних корешках проходят чувствительные центростремительные нервные волокна от рецепторов. Передние корешки - центробежные (двигательные и вегетативные). Если справа перерезать задние корешки, а слева - передние, то правые конечности теряют чувствительность, но способны к движению, а левые сохраняют чувствительность, но не совершают движения.

В сером веществе спинного мозга находятся тела мотонейронов или двигательных нейронов (в передних рогах), интернейронов или промежуточных нейронов (в задних рогах) и вегетативных нейронов (в боковых рогах).

Белое вещество спинного мозга по восходящим путям передает информацию от рецепторов в вышележащие отделы ЦНС, а нисходящие проводящие пути спинного мозга идут от вышележащих нервных центров.

Собственные рефлексы спинного мозга являются сегментарными. Например, шейные и грудные сегменты содержат центры движения рук, а крестцовые - нижних конечностей. В крестцовых сегментах расположен центр отделения мочи.

Полное пересечение спинного мозга приводит к спинальному шоку (временному прекращению деятельности находящихся ниже места перерезки сегментов). Он вызван потерей связи с вышележащими отделами ЦНС. Шок длится у лягушки несколько минут, у обезьян - недели или месяцы, у человека - несколько месяцев.

В головном мозге выделяют (рис. 8.) три основных отдела: ствол, промежуточный и конечный мозг. В свою очередь ствол состоит из продолговатого мозга, варолиева моста, среднего мозга и мозжечка.

Границей между спинным и продолговатым мозгом является место выхода первых шейных корешков.В продолговатый мозг нет сегментов, но есть скопления нейронов (ядра). Они образуют центры вдоха и выдоха, сосудодвигательный центр (регулирует тонус сосудов и уровень кровяного давления), главный центр сердечной деятельности, центр слюноотделения и многие другие. Повреждение продолговатого мозга заканчивается смертью. Это объясняется присутствием в нем жизненно важных центров (дыхательного и сердечно-сосудистых).

Продолговатый мозг отвечает за такие защитные рефлексы как рвота, кашель, чихание, слезоотделение, смыкание век, а также сосание, жевание и глотание. Он же участвует в поддержании позы, перераспределении тонуса мышц при движении, осуществлении первичного анализа кожного, вкусового, слухового и вестибулярного раздражений.

Варолиев мост выполняет двигательные, сенсорные, интегративные и проводниковые функции. Двигательные ядра моста иннервируют мимические и жевательные мышцы, мышцы, отводящие глазное яблоко кнаружи и напрягающие барабанную перепонку. Чувствительные ядра получают сигналы от рецепторов кожи лица, слизистой носа, зубов, надкостницы костей черепа, конъюнктивы и отвечают за первичный анализ вестибулярных и вкусовых раздражений. Вегетативные ядра регулируют секреторную активность слюнных желез. В мосте также располагается пневмотаксический центр , поочередно запускающий центры выдоха и вдоха. Ретикулярная формация моста активирует кору больших полушарий и вызывает пробуждение .

В среднем мозге имеются ядра обеспечивающие поднятие верхнего века, движения глаз, изменения просвета зрачка и кривизны хрусталика. Красные ядра тормозят активность ядер Дейтерса в продолговатом мозге. Перерезка между средним и продолговатым мозгом приводит к децеребрационной ригидности (повышается тонус мышц-разгибателей конечностей, шеи и спины). Это связано с ростом активности ядра Дейтерса. Черное вещество регулирует акты жевания и глотания, а также координирует точные движения пальцев рук. Ретикулярная формация среднего мозга регулирует развитие сна и его смену бодрствованием . Бугры четверохолмия обеспечивают зрительный (поворот головы и глаз в сторону светового раздражителя, фиксацию взора и слежение за движущимися объектами) и слуховой (поворот головы в сторону источника звука) ориентировочные рефлексы. Средний мозг также участвует в рефлекторном удержании частей тела на месте, а также корректирует ориентацию конечностей при смене их положения.

Мозжечок непрерывно получает информацию от мышц, суставов, органов зрения и слуха. Он под контролем коры отвечает за программирование сложных движений, координацию позы и соразмерное целенаправленное движение. Мозжечок влияет на возбудимость отделов конечного мозга, участвует в вегетативном обеспечении деятельности скелетных мышц и сердечнососудистой системы, а также обмена веществ и кроветворения.

Поражения мозжечка сопровождаются: астенией (снижением силы мышечных сокращений и быстрой утомляемостью), атаксией (нарушением координации движений - они размашисты, резки, конечности при ходьбе забрасываются за среднюю линию, наклон головы вниз или в сторону вызывает сильное противоположное движение), астазией (невозможностью сохранить равновесие – животное стоит с широко расставленными лапами), атонией (снижением тонуса мышц), тремором (дрожанием конечностей и головы в покое) и неравномерными движениями .

Основными структурами промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугорье).

Таламус является местом обработки всей информации, направляющейся от всех (кроме обонятельных) рецепторов в кору головного мозга.

Главной функцией таламуса является оценка биологического значения всей полученной информации, а затем ее объединение и передача в кору.

У человека зрительный бугор также необходим для проявления эмоций своеобразной мимикой, жестами и вегетативными реакцииями.

Гипоталамус является главным подкорковым вегетативным центром. Раздражение одних его ядер имитирует эффекты парасимпатической нервной системы. Стимуляция других - сопровождается симпатическими эффектами. Ядра гипоталамуса также регулируют смену цикла цикла «сон-бодрствование», обмен веществ и энергии, пищевое (здесь находятся: центр насыщения, центр голода и центр жажды) и половое поведение, мочеотделение, формирование эмоций.

Регуляцию многих функций гипоталамус осуществляет через железы внутренней секреции и, в первую очередь, через гипоталамус.

Преимущественно в стволе мозга располагается ретикулярная формация (РФ). Лишь небольшое количество относящихсяк ней образований находится в таламусе и в верхних сегментах спинного мозга. Ретикулярная формация оказывает генерализованное активирующее влияние на передние отделы головного мозга и всю кору (восходящая активирующая система), а также нисходящее (облегчающее и тормозное) влияние на спинной мозг. Основными, контролирующими моторную активность структурами РФ являются ядро Дейтерса (продолговатый мозг) и красное ядро (средний мозг).

РФ среднего мозга рефлекторно изменяет работу глазодвигательного аппарата (особенно при внезапном появлении движущихся объектов, изменении положения головы и глаз) и регулирует вегетативные функции (например, кровообращение). В РФ продолговатого мозга расположены центры вдоха и выдоха (их деятельность контролируется пневмотаксическим центром варолиева моста), а также сосудодвигательный центр.

Раздражение РФ вызывает «реакцию пробуждения» и ориентировочный рефлекс, влияет на остроту слуха, зрение, обоняние и болевую чувствительность. Перерезка мозга ниже РФ вызывает бодрствование, выше - сна.

Лимбическая система - функциональное объединение структур ЦНС, обеспечивающее (во взаимодействии с отделами коры больших полушарий) эмоционально-мотивационные компоненты поведения и интеграцию функций организма, направленных на его приспособление к условиях существования. Она отвечает на афферентную информацию от поверхности тела и внутренних органов организацией поведенческих актов (половых, оборонительных, пищевых), формированием мотиваций и эмоций, обучением, хранением информации, а также сменой фаз сна и бодрствования.

К отделам лимбической системы относят (рис. 9.): обонятельную луковицу и обонятельный бугорок (у человека развиты слабо), сосцевидные тела, гиппокамп, таламус, миндалину, поясную и гаппокампальную извилины. Нередко к лимбической системе относят большее число структур (например, части лобной и височной коры, гипоталамуса и РФ среднего мозга).

Многие сигналы в лимбической системе проходят по кругам. В «круге Пейпеса» импульсы из гиппокампа переходят в сосцевидные тела, из них в ядра таламуса, затем через поясную и гиппокампальную извилины возвращаются в гиппокамп. Описанная циркуляция обеспечивает формированиие эмоций, памяти и обучение. Другой круг (миндалина → гипоталамус → мезенцефальные структуры → миндалина) регулирует пищевые, сексуальные и агрессивно-оборонительные формы поведения.

Стимуляция определенных зон лимбической системы вызывают приятные ощущения («центры удовольствия»). Рядом с ними находятся структуры, приводящие к реакциям избегания («центры неудовольствия»).

Повреждение лимбической системы приводит к выраженному нарушению социального поведения (ведут себя отчужденно, встревожены и не уверены в себе) и сопоставления новой информации с хранящейся в памяти (не отличают съедобные предметы от несъедобных и поэтому всё берут в рот), становится невозможна концентрация внимания.

Большие полушария и соединяющая их область (мозолистое тело и свод) относятся к конечному мозгу . Каждое полушарие делят на лобную, теменную, затылочную, височную и скрытую (островок) доли. Их поверхность покрыта корой. К конечному мозгу у человека относятся также скопления серого вещества внутри полушарий (базальные ядра ). Отделяет полушарие от ствола мозга гиппокамп. Между базальными ядрами и корой находитсябелое вещество . Оно состоит из множества нервных волокон, соединяющих различные части полушарий друг с другом и иными отделами мозга.

Базальные ганглии обеспечивают переход от замысла движения к действию, управляют силой, амплитудой и направлением движений лица, рта и глаз, тормозят безусловные рефлексы и выработку условных рефлексов, участвуют в формировании памяти и восприятии информации, отвечают за организацию пищевого поведения и ориентировочных реакций.

После разрушения базальных ганглиев возникают: маскообразное лицо, гиподинамия, эмоциональная тупость, подергивание головы и конечностей при движении, монотонная речь, нарушение согласованности перемещения конечностей при ходьбе.

Кора больших полушарий (КБП) головного мозга состоит из множеств нейронов и представляет собой слой серого вещества.

На основании эволюционного подхода, различают древнюю, старую и новую кору. К древней относят мало развитые у человека обонятельные структуры. Старую кору составляют основные части лимбической системы: поясная извилина, гиппокамп, миндалина. Тесная связь древней и старой коры обеспечивает эмоциональный компонент обонятельного восприятия.

Новая кора выполняет наиболее сложные функции. К её сенсорной области сходятся все чувствительные пути. Площадь проекции каждого формирующегося в коре ощущения прямо пропорциональна его важности (проекции с кожи кисти рук больше, чем со всего туловища). В затылочной доле располагается корковая часть зрительного (информирует о свойствах светового сигнала) анализатора. Ее удаление приводит к слепоте. Корковая часть слухового анализатора локализуется в височной доле (воспринимает и анализирует звуковые сигналы, организует слуховой контроль речи). Ее удаление вызывает глухоту. Тактильная, болевая, температурная и другие виды кожной чувствительности проецируются в теменную долю.

Моторные (двигательные) области находятся в лобных долях. В них, каждая группа нейронов отвечает за произвольную активность отдельных мышц (их сокращение вызывается раздражением определенных участков коры). Причем, величина корковой двигательной зоны пропорциональна не массе управляемых мышц, а точности движений (самые большие зоны управляют движениями кисти руки, языком, мимической мускулатурой). Левое полушарие непосредственно связано с двигательными механизмами речи. При его поражении больной понимает речь, но говорить не может.

Моторные области получают необходимую для принятия решения и исполнения информацию из ассоциативных областей (занимают около 80% всей поверхности полушарий), которые объединяют поступающие в неё от всех рецепторов сигналы в целостные акты научения, мышления и долговременной памяти, а также формируют программ целенаправленного поведения. Если теменная ассоциативная кора формирует представления об окружающем пространстве и теле, то височная - участвует в слуховом контроле речи, а лобная - формирует сложное поведение. При повреждении ассоциативных зон ощущения сохранены, но нарушена их оценка. Это проявляется апраксиями (неспособностью производить заученные движения: застегивание пуговиц, написание текста и др.) и агнозиями (расстройствами узнавания). При моторной агнозии - понимает речь, но говорить не может, при сенсорной - говорит, но не понимает речи.

Таким образом, конечный мозг играет роль органа сознания, памяти и умственной деятельности, что проявляется в поведении и необходимо для приспособления человека к меняющимся условиям среды обитания.

ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА

Нервная система разделена на соматическую и вегетативную. Все эффекторные нейроны соматической нервной системы являются мотонейронами. Они начинаются в ЦНС и заканчиваются на скелетной мускулатуре. Вегетативная нервная система иннервирует все внутренние органы, железы (секреторные нейроны), гладкую мускулатуру (мотонейроны) сосудов, пищеварительного тракта и мочевыводящих путей, а также регулирует обмен веществ (трофические нейроны) в различных тканях.

Афферентное звено соматической и вегетативной рефлекторных дуг общее. Аксоны центральных вегетативных нейронов выходят из ЦНС и переключаются в ганглиях на периферический нейрон, который иннервирует соответствующие клетки.

Вегетативная нервная система делится на симпатическую и парасимпатическую.

Симпатическая нервная система иннервирует все органы и ткани организма. Ее центры представлены в боковых рогах серого вещества спинного мозга (от I грудного до II-IV поясничных сегментов). При возбуждении они усиливают работу сердца, рассширяют бронхи и зрачок, снижают активность пищеварения, вызывают сокращение сфинктеров мочевого и желчного пузырей. Симпатические влияния быстро мобилизуют связанный с расходом энергии обмен веществ, дыхание и кровообращение в организме, что позволяет ему оперативно реагировать на неблагоприятные факторы. Этим объясняется и повышение работоспособности скелетных мышц при раздражении симпатического нерва (феномен Орбели – Гинецинского).

Парасимпатическими центрами являются ядра в стволе мозга и крестцовом отделе спинного мозга. Парасимпатическая нервная система не иннервирует скелетные мышцы, многие кровеносные сосуды и органы чувств. При ее возбуждении тормозится работа сердца, сужаются бронхи и зрачок, стимулируется пищеварение, опорожняются желчный и мочевой пузыри, а также прямая кишка. Вызванные парасимпатической нервной системой изменения обмена обеспечивают восстановление и поддержание постоянства состава внутренней среды организма, нарушенного при возбуждении симпатической нервной системы.

Вегетативные функции не подчиняются сознанию, но регулируются практически всеми отделами ЦНС. Стимуляция спинальных центров расширяет зрачок, усиливает потоотделение, сердечную деятельность и расширяет бронхи. Здесь же расположены центры дефекации, мочеиспускания, половых рефлексов. Стволовые центры регулируют зрачковый рефлекс и аккомодацию глаз, тормозят деятельность сердца, возбуждают слезоотделение, усиливают секрецию слюнных, желудочных и поджелудочной желез, а также желчевыделение, сокращения желудка и кишечника. Сосудодвигательный центр отвечает за рефлекторное изменение просвета сосудов. Гипоталамус являются главным подкорковым уровнем вегетативных функций. Он отвечает за появление эмоций, агрессивно-оборонительных и половых реакций. Лимбическая система отвечает за формирование вегетативного компонента эмоциональных реакций. Кора осуществляет высший контроль вегетативных функций, влияя на все подкорковые вегетативные центры, а также координируя вегетативные и соматические функции во время поведенческого акта.



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то