Условия равновесия твердого тела. Условия равновесия тел Устойчивое равновесие тел

Статика.

Раздел механики, в котором изучаются условия равновесия механических систем под действием приложенных к ним сил и моментов.

Равновесие сил.

Механическое равновесие , также известно как статическое равновесие, — состояние тела, находящегося в покое, или движущегося равномерно, в котором сумма сил и моментов, действующих на него, равна нулю

Условия равновесия твердого тела.

Необходимым и достаточными условиями равновесия свободного твердого тела является равенство нулю векторной суммы всех внешних сил, действующих на тело, равенство нулю суммы всех моментов внешних сил относительно произвольной оси, равенство нулю начальной скорости поступательного движения тела и условие равенства нулю начальной угловой скорости вращения.

Виды равновесия.

Равновесие тела устойчиво , если при любых допускаемых внешними связями малых отклонениях от положения равновесия в системе возникают силы или моменты сил, стремящиеся возвратить тело в исходное состояние.

Равновесие тела неустойчиво , если хотя бы при некоторых допускаемых внешними связями сколько угодно малых отклонениях от положения равновесия в системе возникают силы или моменты сил, стремящиеся еще больше отклонить тело от исходного состояния равновесия.

Равновесие тела называется безразличным , если при любых допускаемых внешними связями малых отклонениях от положения равновесия в системе возникают силы или моменты сил, стремящиеся возвратить тело в исходное состояние

Центр тяжести твердого тела.

Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. Например, в системе, состоящей из двух одинаковых масс, соединённых несгибаемым стержнем, и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести системы будет смещён к тому концу стержня, который находится ближе к планете (ибо вес массы P = m·g зависит от параметра гравитационного поля g), и, вообще говоря, даже расположен вне стержня.

В постоянном параллельном (однородном) гравитационном поле центр тяжести всегда совпадает с центром масс. Поэтому на практике эти два центра почти совпадают (так как внешнее гравитационное поле в некосмических задачах может считаться постоянным в пределах объёма тела).

По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (так как реального гравитационного поля нет и не имеет смысла учёт его неоднородности). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.

Очевидно, что тело может покоиться только по отношению к одной определенной системе координат. В статике изучают условия равновесия тел именно в такой системе. При равновесии скорости и ускорения всех участков (элементов) тела равны нулю. Учитывая это, можно установить одно из необходимых условии равновесия тел, используя теорему о движении центра масс (см. § 7.4).

Внутренние силы не влияют на движение центра масс, так как их сумма всегда равна нулю. Определяют движение центра масс тела (или системы тел) лишь внешние силы. Так как при равновесии тела ускорение всех его элементов равно нулю, то равно нулю и ускорение центра масс. Но ускорение центра масс определяется векторной суммой внешних сил, приложенных к телу (см. формулу (7.4.2)). Поэтому при равновесии эта сумма должна равняться нулю.

Действительно, если сумма внешних сил F i равна нулю, то и ускорение центра масс а c = 0. Отсюда следует, что скорость центра масс с = const. Если в начальный момент скорость центра масс равнялась нулю, то и в дальнейшем центр масс остается в покое.

Полученное условие неподвижности центра масс является необходимым (но, как мы скоро увидим, недостаточным) условием равновесия твердого тела. Это так называемое первое условие равновесия. Его можно сформулировать следующим образом.

Для равновесия тела необходимо, чтобы сумма внешних сил, приложенных к телу, была равна нулю:

Если сумма сил равна нулю, то равна нулю и сумма проекций сил_на все три оси координат. Обозначая внешние силы через 1 , 2 , 3 и т. д., получим три уравнения, эквивалентных одному векторному уравнению (8.2.1):

Для того чтобы тело покоилось, необходимо еще, чтобы начальная скорость центра масс была равна нулю.

Второе условие равновесия твердого тела

Равенство нулю суммы внешних сил, действующих на тело, необходимо для равновесия, но недостаточно. При выполнении этого условия лишь центр масс с необходимостью будет покоиться. В этом нетрудно убедиться.

Приложим к доске в разных точках равные по модулю и противоположные по направлению силы так, как показано на рисунке 8.1 (две такие силы называют парой сил). Сумма этих сил равна нулю: + (-) = 0. Но доска будет поворачиваться. В покое находится только центр масс, если его начальная скорость (скорость до приложения сил) была равна нулю.

Рис. 8.1

Точно так же две одинаковые по модулю и противоположные по направлению силы поворачивают руль велосипеда или автомобиля (рис. 8.2) вокруг оси вращения.

Рис. 8.2

Нетрудно понять, в чем здесь дело. Любое тело находится в равновесии, когда сумма всех сил, действующих на каждый его элемент, равна нулю. Но если сумма внешних сил равна нулю, то сумма всех сил, приложенных к каждому элементу тела, может быть и не равной нулю. В этом случае тело не будет находиться в равновесии. В рассмотренных примерах доска и руль потому и не находятся в равновесии, что сумма всех сил, действующих на отдельные элементы этих тел, не равна нулю. Тела вращаются.

Выясним, какое еще условие, кроме равенства нулю суммы внешних сил, должно выполняться, чтобы тело не вращалось и находилось в равновесии. Для этого воспользуемся основным уравнением динамики вращательного движения твердого тела (см. § 7.6):

Напомним, что в формуле (8.2.3)

представляет собой сумму моментов приложенных к телу внешних сил относительно оси вращения, a J - момент инерции тела относительно той же оси.

Если , то и Р = 0, т. е. тело не имеет углового ускорения, и, значит, угловая скорость тела

Если в начальный момент угловая скорость равнялась нулю, то и в дальнейшем тело не будет совершать вращательное движение. Следовательно, равенство

(при ω = 0) является вторым условием, необходимым для равновесия твердого тела.

При равновесии твердого тела сумма моментов всех внешних сил, действующих на него относительно любой оси (1), равна нулю .

В общем случае произвольного числа внешних сил условия равновесия твердого тела запишутся в виде:

Эти условия необходимы и достаточны для равновесия любого твердого тела. Если они выполняются, то векторная сумма сил (внешних и внутренних), действующих на каждый элемент тела, равна нулю.

Равновесие деформируемых тел

Если тело не абсолютно твердое, то под действием приложенных к нему внешних сил оно может не находиться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равна нулю. Это происходит потому, что под действием внешних сил тело может деформироваться и в процессе деформации сумма всех сил, действующих на каждый его элемент, в этом случае не будет равна нулю.

Приложим, например, к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и равна нулю сумма их моментов относительно оси, проходящей через любую точку шнура.

При деформации тел, кроме того, происходит изменение плеч сил и, следовательно, изменение моментов сил при заданных силах. Отметим еще, что только у твердых тел можно переносить точку приложения силы вдоль линии действия силы в любую другую точку тела. Это не меняет момента силы и внутреннего состояния тела.

В реальных телах переносить точку приложений силы вдоль линии ее действия можно лишь тогда, когда деформации, которые вызывает эта сила, малы и ими можно пренебречь. В этом случае изменение внутреннего состояния тела при переносе точки приложения силы несущественно. Если же деформациями пренебречь нельзя, то такой перенос недопустим. Так, например, если вдоль резинового бруска к двум его концам приложить две равные по модулю и прямо противоположные по направлению силы 1 и 2 (рис. 8.3, а), то брусок будет растянут. При переносе точек приложения этих сил вдоль линии действия в противоположные концы бруска (рис. 8.3, б) те же силы будут сжимать брусок и его внутреннее состояние окажется иным.

Рис. 8.3

Для расчета равновесия деформируемых тел нужно знать их упругие свойства, т. е. зависимость деформаций от действующих сил. Эту сложную задачу мы решать не будем. Простые случаи поведения деформируемых тел будут рассмотрены в следующей главе.

(1) Мы рассматривали моменты сил относительно реальной оси вращения тела. Но можно доказать, что при равновесии тела сумма моментов сил равна нулю относительно любой оси (геометрической линии), в частности относительно трех осей координат или относительно оси, проходящей через центр масс.

Условия равновесия твёрдого тела в курсе физики средней школы изучаются в разделе «Механика» при изучении статики как раздела механики. Освещается факт, что движение тела бывает двух видов: поступательное и вращательное. Поступательным называют движение, при котором любая прямая, проведённая через любые две точки тела в данной инерциальной системе отсчёта в процессе движения остаётся параллельной самой себе. Вращательным называют такое движение, при котором все точки, принадлежащие телу, за данный промежуток времени поворачиваются относительно оси вращения на одинаковый угол.

Вводится центр тяжести тела. Для этого тело мысленно разбивается на множество элементов. Центром тяжести будет точка, где пересекаются прямые, на которых лежат векторы сил тяжести, действующие на элементы тела. Далее рассматриваются частные случаи, иллюстрирующие зависимость вида движения твёрдого тела от точки приложения внешней силы:

  1. Пусть сила приложена к центру тяжести или незакреплённой оси вращения - тело будет двигаться поступательно, вращения не будет;
  2. Пусть сила приложена к произвольной точке тела, при этом ось вращения закреплена - тело будет вращаться, поступательного движения не будет;
  3. Пусть сила приложена к произвольной точке тела, при этом ось вращения не закреплена - тело будет вращаться вокруг своей оси и при этом двигаться поступательно.

Вводится момент силы. Момент силы - это векторная физическая величина, характеризующая вращательный эффект силы. Математически в вузовском курсе общей физики момент силы вводят как векторное произведение плеча силы на вектор данной силы:

где - это плечо силы. Очевидно, что уравнение (2) является следствием уравнения (1).

Учащимся объясняется, что плечо силы - это кратчайшее расстояние от точки опоры (или оси вращения) до линии действия силы.

Первое условие (уравнение (3)) обеспечивает отсутствие поступательного движения, второе условие (уравнение (4)) - отсутствие вращательного. Неплохо было бы обратить внимание на то, что уравнение (3) является частным случаем 2-го закона Ньютона (при ).

Учащимся необходимо усвоить, что момент силы - это векторная величина, поэтому при скалярной записи уравнения (4) необходимо учитывать знак момента. Для учащихся школы правила звучат так:

  1. Если сила стремится повернуть тело против часовой стрелки - её момент относительно данной оси положительный;
  2. Если сила стремится повернуть тело по часовой стрелке - её момент относительно данной оси отрицательный.

Как пример применения условий равновесия твёрдого тела служит применение рычагов и блоков. Пусть на одно плечо рычага действует сила , на другое - (рис. 1).

В данном случае представим, что опора тела неподвижна, поэтому нам понадобится только второе условие равновесия:



В скалярном виде, учтя знаки, получаем:





Полученное выражение называется условием равновесия рычага. Учащиеся должны твёрдо усвоить, что это лишь частный случай, и в более общих случаях необходимо опираться на уравнение (4).


Как известно из курса 7-го класса, блоки бывают подвижный и неподвижный. С помощью условий равновесия анализируют работу по равномерному подъёму груза с помощью неподвижного блока и системы подвижного и неподвижного блоков.

1. Неподвижный блок.
Пусть диаметр блока d . Воспользовавшись условием равновесия (4), получаем:

Полученный факт иллюстрирует, что неподвижный блок не даёт выигрыша в силе, то есть мы должны будем приложить для подъёма груза силу, равную по модулю весу груза. Неподвижный блок применяется только лишь для удобства, в основном в паре с подвижным блоком.

2. Подвижный блок.
Воспользуемся уравнением (4) аналогично случаю с неподвижным блоком:

Мы получили, что в системе подвижного и неподвижного блоков при отсутствии сил трения получается выигрыш в силе в 2 раза. В данном случае диаметры блоков были одинаковы. Полезно будет с учащимися разобрать способы получения выигрыша в силе в 4, 6 и т. д. раз.

В заключение, проанализировав то, о чём говорилось выше, формулируется «золотое правило» механики. Решаются задачи на рычаги, блоки и другие случаи равновесия тел.

ОПРЕДЕЛЕНИЕ

Устойчивое равновесие - это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, возвращается в прежнее положение.

Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. Например, шарик, лежащий на дне сферического углубления (рис.1 а).

ОПРЕДЕЛЕНИЕ

Неустойчивое равновесие - это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, будет еще больше отклоняться от положения равновесия.

В данном случае при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия. Примером может служить шарик, находящийся в верхней точке выпуклой сферической поверхности (ри.1 б).

ОПРЕДЕЛЕНИЕ

Безразличное равновесие - это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, не меняет своего положения (состояния).

В этом случае при небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю. Например, шарик, лежащий на плоской поверхности (рис.1,в).

Рис.1. Различные типы равновесия тела на опоре: а) устойчивое равновесие; б) неустойчивое равновесие; в) безразличное равновесие.

Статическое и динамическое равновесие тел

Если в результате действия сил тело не получает ускорения, оно может находиться в состоянии покоя или двигаться равномерно прямолинейно. Поэтому можно говорить о статическом и динамическом равновесии.

ОПРЕДЕЛЕНИЕ

Статическое равновесие - это такое равновесие, когда под действием приложенных сил тело находится в состоянии покоя.

Динамическое равновесие - это такое равновесие, когда по действием сил тело не изменяет своего движения.

В состоянии статического равновесия находится подвешенный на тросах фонарь, любое строительное сооружение. В качестве примера динамического равновесия можно рассматривать колесо, которое катится по плоской поверхности при отсутствии сил трения.

Если тело неподвижно, то это тело находится в равновесии. Многие тела покоятся, несмотря на то, что на них действуют силы со стороны других тел. Это различные строения, камни, машины, части механизмов, мосты и многие другие тела. Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники.
Все реальные тела под воздействием приложенных к ним сил со стороны других тел изменяют свою форму и размеры, то есть деформируются. Величина деформации зависит от многих факторов: материала тела, его формы, приложенных к нему сил. Деформации могут быть настолько малыми, что обнаружить их можно только при помощи специальных приборов.
Деформации могут быть большими, и тогда их легко заметить, например, растяжение пружины или резинового шнура, изгиб деревянной доски или тонкой металлической линейки.
Иногда действия сил вызывают значительные деформации тела, в этом случае, фактически после приложения сил, мы будем иметь дело с телом, которое имеет совершенно новые геометрические размеры и форму. Также необходимо будет определить условия равновесия этого нового деформированного тела. Подобные задачи, связанные с расчетом деформаций тел, как правило, очень сложны.
Довольно часто в реальных жизненных ситуациях деформации очень невелики, а тело при этом остается в равновесии. В таких случаях деформациями можно пренебречь и рассматривать ситуацию так, как если бы тела были недеформируемыми, т. е. абсолютно твердыми. Абсолютно твердое тело в механике - это такая модель реального тела, у которой расстояние между частицами не изменяется, каким бы воздействиям данное тело не подвергалось. Следует понимать, что абсолютно твердых тел в природе не существует, но в некоторых случаях мы можем считать реальное тело абсолютно твердым.
Например, железобетонную плиту перекрытия дома можно считать абсолютно твердым телом в том случае, когда на ней стоит очень тяжелый шкаф. Сила тяжести шкафа действует на плиту, и плита прогибается, но эта деформация будет столь мала, что обнаружить ее можно только с помощью точных приборов. Поэтому в данной ситуации мы можем пренебречь деформацией и считать плиту абсолютно твердым телом.
Выяснив условия равновесия абсолютно твердого тела, мы узнаем условия равновесия реальных тел в тех ситуациях, когда их деформациями можно пренебречь.
Статика - раздел механики, в котором изучаются условия равновесия абсолютно твердых тел.
В статике учитываются размеры и форма тел, а все рассматриваемые тела считаются абсолютно твердыми. Статику можно рассматривать как частный случай динамики, так как неподвижность тел, когда на них действуют силы, есть частный случай движения с нулевой скоростью.
Деформации, происходящие в теле, изучаются в прикладных разделах механики (теория упругости, сопротивление материалов). В дальнейшем для краткости абсолютно твердое тело будем называть твердым телом, или просто телом.
Выясним условия равновесия любого тела. Для этого используем законы Ньютона. Чтобы упростить себе задачу, разобьем мысленно все тело на большое число небольших частей, каждый из которых можно рассматривать как материальную точку. Все тело состоит из множества элементов, некоторые из них изображены на рисунке. Силы, которые действуют на данное тело со стороны других тел - это внешние силы. Внутренние силы - это силы, с которыми элементы действуют друг на друга. Сила F1,2 - это сила, действующая на элемент 1 со стороны элемента 2. Сила F2,1 приложена к элементу 2 элементом 1. Это внутренние силы; к ним относятся также силы F1,3 и F3,1, F2,3 и F3,2.
Силы F1, F2, F3 - это геометрическая сумма всех внешних сил, действующих на элементы 1, 2, 3. Силы F1 штрих, F2 штрих, F3 штрих - это геометрическая сумма внутренних сил, приложенных к элементам 1, 2, 3.
Ускорение каждого элемента тела равно нулю, потому что тело покоится. Значит, по второму закону Ньютона равна нулю и геометрическая сумма всех внутренних и внешних сил, действующих на элемент.
Для равновесия тела необходимо и достаточно, чтобы геометрическая сумма всех внешних и внутренних сил, действующих на каждый элемент этого тела, была равна нулю.
Каким условиям должны удовлетворять внешние силы, действующие на твердое тело, чтобы оно находилось в покое? Для этого сложим уравнения. Равенство получается ноль.
В первых скобках этого равенства записана векторная сумма всех внешних сил, действующих на тело, а во вторых скобках - векторная сумма всех внутренних сил, приложенных к элементам этого тела. Мы уже выяснили, используя третий закон Ньютона, что векторная сумма всех внутренних сил системы равна нулю, потому что любой внутренней силе соответствует сила равная ей по модулю и противоположная по направлению.
Следовательно, в полученном равенстве остается исключительно геометрическая сумма внешних сил, которые оказывают действие на тело.
Это равенство является обязательным условием для равновесия материальной точки. Если мы применяем его к твердому телу, то это равенство называют первым условием его равновесия.
В том случае, если твердое тело находится в равновесии, то геометрическая сумма внешних сил, приложенных к нему, равна нулю.
Учитывая тот факт, что к одним элементам тела может быть приложено сразу несколько внешних сил, а на другие элементы внешние силы могут вообще не действовать, то число всех внешних сил совершенно необязательно должно быть равно числу всех элементов.
Если сумма внешних сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности для проекций внешних сил на ось ОХ можно записать, что сумма проекций на ось ОХ внешних сил равна нулю. Аналогичным способом может быть записано уравнение для проекций сил на оси ОY и OZ.
На основе условия равновесия любого элемента тела выведено первое условие равновесия твердого тела.



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то