Кора и ее функции. Строение и функции коры головного мозга. Зоны коры больших полушарий

Шошина Вера Николаевна

Терапевт, образование: Северный медицинский университет. Стаж работы 10 лет.

Написано статей

Головной мозг современного человека и его сложное строение является наибольшим достижением этого вида и его преимуществом, отличием от других представителей живого мира.

Кора головного мозга – это очень тонкий слой серого вещества, который не превышает 4,5 мм. Он расположен на поверхности и боковых сторонах больших полушарий, покрывая их сверху и по периферии.

Анатомия коры или кортекса, сложная. Каждый участок выполняет свою функцию и играет огромное значение в осуществлении нервной деятельности. Можно считать этот участок высшим достижением физиологического развития человечества.

Строение и кровоснабжение

Кора головного мозга – это слой клеток серого вещества, составляющий примерно 44% от общего объема полушария. Площадь коры среднестатистического человека – около 2200 квадратных сантиметров. Особенности строения в виде чередующихся борозд и извилин призваны максимально увеличить размеры кортекса и в то же время компактно уместить в пределах черепной коробки.

Интересно, что рисунок извилин и борозд столь же индивидуален, как и отпечатки папиллярных линий на пальцах человека. Каждая особь индивидуальна по рисунку и .

Кора полушарий из следующих поверхностей:

  1. Верхнелатеральная. Она примыкает к внутренней стороне костей черепа (свода).
  2. Нижняя. Ее передние и средние отделы находятся на внутренней поверхности основания черепа, а задние опираются о намет мозжечка.
  3. Медиальная. Она направлена к продольной щели мозга.

Наиболее выступающие места носят название полюсов – лобного, затылочного и височного.

Кора больших полушарий симметрично делится на доли:

  • лобная;
  • височная;
  • теменная;
  • затылочная;
  • островковая.

В строении выделяются следующие слои коры человеческого головного мозга:

  • молекулярный;
  • наружный зернистый;
  • слой пирамидальных нейронов;
  • внутренний зернистый;
  • ганглионарный, внутренний пирамидный или слой клеток Беца;
  • слой мультиформатных, полиморфных или веретенообразных клеток.

Каждый слой не является отдельным независимым образованием, а представляет собой единую слаженно функционирующую систему.

Функциональные области

Нейростимуляция выявила, что кортекс подразделяется на следующие отделы коры головного мозга:

  1. Сенсорные (чувствительные, проекционные). Они получают входящие сигналы от рецепторов, находящихся в различных органах и тканях.
  2. Двигательные, отправляемые исходящие сигналы к эффекторам.
  3. Ассоциативные, обрабатывающие и сохраняющие информацию. Они оценивают ранее полученные данные (опыт) и выдают ответ с их учетом.

Структурно-функциональная организация коры головного мозга включает в себя следующие элементы:

  • зрительная, расположенная в затылочной доле;
  • слуховая, занимающая височную долю и часть теменной;
  • вестибулярная в меньшей степени изучена и пока еще представляет проблему для исследователей;
  • обонятельная находится на нижней ;
  • вкусовая размещается в височных отделах мозга;
  • соматосенсорная кора выступает в виде двух областей – I и II, расположенных в теменной доле.

Столь сложное строение кортекса говорит о том, что малейшее нарушение приведет к последствиям, отразившимся на множестве функций организма и вызовет патологии разной интенсивности, зависящие от глубины поражения и расположения участка.

Как связана кора с другими отделами мозга

Все зоны коры человеческого головного мозга не существуют обособленно, они взаимосвязаны и образуют неразрывные двусторонние цепи с расположенными глубже мозговыми структурами.

Наиболее важной и значимой оказывается связь кортекса и таламуса. При травме черепа повреждения оказываются намного значительнее, если вместе с корой травмированным оказывается и таламус. Травмы только кортекса выявляются намного меньшими, и имеют менее значительные последствия для организма.

Почти все связи от разных частей коры проходят через таламус, что дает основание объединять эти части головного мозга в таламокортикальную систему. Прерывание связей таламуса и кортекса приводит к утрате функций соответствующей части коры.

Пути от сенсорных органов и рецепторов к кортесу также пролегают через таламус, за исключением некоторых обонятельных путей.

Интересные факты о коре головного мозга

Человеческий мозг – уникальное творение природы, которое сами владельцы, то есть люди, до сих пор не научились полностью понимать. Не совсем справедливо сравнивать его с компьютером, потому что сейчас даже самые современные и мощные компьютеры не могут справляться с объемами задач, выполняемых мозгов в течение секунды.

Мы привыкли не обращать внимание на привычные функции мозга, связанные с поддержанием нашей ежедневной жизнедеятельности, но произойди в этом процессе хоть мельчайший сбой, сразу бы ощутили его «на своей шкуре».

«Маленькие серые клеточки», как говорил незабвенный Эркюль Пуаро, или с точки зрения науки – кора мозга – это орган, до сих пор остающийся загадкой для ученых. Мы выяснили очень многое, например, знаем, что величина мозга никак не влияет на уровень интеллекта, ведь у признанного гения – Альберта Эйнштейна – мозг имел массу ниже средней, около 1230 граммов. В то же время есть существа, имеющие мозг сходной структуры и даже большего размера, но так и не достигшие уровня развития человека.

Яркий пример – харизматичные и умные дельфины. Кое-кто считает, что когда-то в глубочайшей древности древо жизни раскололось на две ветви. По одному пути прошли наши предки, а по другому – дельфинов, то есть у нас с ними, возможно, были общие предки.

Особенностью коры головного мозга является ее незаменимость. Хотя мозг способен адаптироваться к травмам и даже частично или полностью восстанавливать свою функциональность, при потере части коры утраченные функции не восстанавливаются. Мало того, ученые смогли сделать вывод о том, что эта часть во многом обуславливает личность человека.

При травме лобной доли или наличия здесь опухоли, после операции и удаления уничтоженного участка кортекса больной радикально меняется. То есть перемены касаются не только его поведения, но и личности в целом. Отмечены случаи, когда хороший добрый человек превращался в настоящее чудовище.

Некоторые психологи и криминалисты на основании этого сделали вывод, что внутриутробное повреждение коры головного мозга, особенно его лобной доли, приводит к рождению детей с асоциальным поведением, с социопатическими наклонностями. У таких малышей высокий шанс стать преступником и даже маньяком.

Патологии КГМ и их диагностика

Все нарушения строения и функционирования головного мозга и его коры можно разделить на врожденные и приобретенные. Часть из таких поражений несовместима с жизнью, например, анэнцефалия – полное отсутствие мозга и акрания – отсутствие черепных костей.

Другие заболевания оставляют шанс на выживание, но сопровождаются нарушениями умственного развития, например, энцефалоцеле, при котором часть мозговых тканей и его оболочек выпячивается наружу через отверстие в черепе. В эту же группу попадает и – недоразвитый маленький мозг, сопровождающийся разными формами задержки психического (олигофрения, идиотия) и физического развития.

Более редким вариантом патологии является макроцефалия, то есть увеличение головного мозга. Патология проявляется умственной отсталостью и судорогами. При нем увеличение мозга может быть частичным, то есть гипертрофия асимметричная.

Патологии, при которых поражается кора головного мозга, представлены следующими заболеваниями:

  1. Голопрозэнцефалия – состояние, при котором полушария не разделены и не существует полноценного деления на доли. Дети при такой болезни рождаются мертвыми или погибают в первые сутки после родов.
  2. Агирия – недоразвитость извилин, при котором нарушаются функции коры. Атрофия сопровождается множественными расстройствами и приводит к смерти младенца в течение первых 12 месяцев жизни.
  3. Пахигирия – состояние, при котором первичные извилины увеличены в ущерб остальным. Борозды при этом короткие и выпрямленные, строение коры и подкорковых структур нарушено.
  4. Микрополигирия, при которой мозг покрыт мелкими извилинами, а кора имеет не 6 нормальных слоев, а всего 4. Состояние бывает диффузным и локальным. Незрелость приводит к развитию плегий и парезов мышц, эпилепсии, которая развивается в первый же год, умственной отсталости.
  5. Фокальная корковая дисплазия сопровождается наличием в височной и лобной доле патологических участков с огромными нейронами и ненормальными . Неправильное строение клеток приводит к возникновению повышенной возбудимости и приступам, сопровождающимся специфическими движениями.
  6. Гетеротопия – скопление нервных клеток, которые в процессе развития не достигли своего места в коре. Одиночное состояние может проявиться после десятилетнего возраста, большие скопления вызывают приступы типа эпилептических припадков и олигофрению.

Приобретенные заболевания в основном являются следствиями перенесенных серьезных воспалений, травм, а также появляются после развития или удаления опухоли – доброкачественной или злокачественной. При таких состояниях, как правило, прерывается импульс, исходящий от коры в соответствующие органы.

Наиболее опасным считается так называемый префронтальный синдром. Эта область – фактически проекция всех органов человека, поэтому повреждения лобной доли приводит к , памяти, речи, движений, мышления, а также к частичной или полной деформации и изменению личности больного.

Ряд патологий, сопровождающихся внешними изменениями или отклонениями в поведении, диагностировать достаточно легко, другие требуют более тщательного изучения, а удаленные опухоли подвергаются гистологическому исследованию, чтобы исключить злокачественную природу.

Тревожными показаниями для проведения процедуры является наличие в семье врожденных патологий или заболеваний, гипоксия плода в беременности, асфиксия в родах, родовая травма.

Методы диагностики врожденных отклонений

Современная медицина помогает препятствовать рождению детей с тяжелейшими пороками развития коры головного мозга. Для этого выполняется скрининг в первом триместре беременности, который позволяет выявить патологии строения и развития мозга на самых ранних стадиях.

У родившегося крохи с подозрением на патологии проводится нейросонография через «родничок», а детей постарше и взрослых обследуют путем проведения . Этот способ позволяет не только обнаружить дефект, но и визуализировать его размеры, форму и расположение.

Если в семье встречались наследственные проблемы, связанные со строением и функционированием коры и всего мозга, требуется консультация генетика и проведение специфических обследований и анализов.

Знаменитые «серые клеточки» – величайшее достижение эволюции и высшее благо для человека. Вызвать повреждения могут не только наследственные заболевания и травмы, но и приобретенные патологии, спровоцированные самим человеком. Врачи призывают беречь здоровье, отказаться от вредных привычек, позволять своему телу и мозгу отдыхать и не давать разуму лениться. Нагрузки полезны не только мышцам и суставам – они не позволяют нервным клеткам стареть и выходить из строя. Тот, кто учится, работает и загружает свой мозг, меньше страдает от его износа и позже приходит к и утрате умственных способностей.

Современным ученым доподлинно известно, что благодаря функционированию головного мозга возможны такие способности, как осознание сигналов, которые получены из внешней среды, мыслительная деятельность, запоминание мышления.

Способность личности осознавать собственные отношения с другими людьми непосредственно связано с процессом возбуждения нейронных сетей. Причем речь идет именно о тех нейронных сетях, которые расположены в коре. Она представляет собой структурную основу сознания и интеллекта.

В данной статье рассмотрим, как устроена кора головного мозга, зоны коры головного мозга будут подробно описаны.

Неокортекс

Кора включает в себя около четырнадцати миллиардов нейронов. Именно благодаря им осуществляется функционирование основных зон. Подавляющая часть нейронов, до девяноста процентов, формирует неокортекс. Он является частью соматической НС и ее высшим интегративным отделом. Важнейшими функциями коры головного мозга выступают восприятие, переработка, интерпретация информации, которую человек получает при помощи всевозможных органов чувств.

Помимо этого, неокортекс управляет сложными движениями системы мышц человеческого тела. В нем расположены центры, принимающие участие в процессе речи, хранении памяти, абстрактном мышлении. Большая часть процессов, которые в нем происходят, формирует нейрофизическую основу человеческого сознания.

Из каких отделов еще состоит кора головного мозга? Зоны коры головного мозга рассмотрим ниже.

Палеокортекс

Является еще одним большим и важным отделом коры. В сравнении с неокортексом у палеокортекса более простая структура. Процессы, которые здесь протекают, редко отражаются в сознании. В этом отделе коры высшие вегетативные центры локализуются.

Связь коркового слоя с другими отделами мозга

Немаловажно рассмотреть связь, которая имеется между нижележащими отделами мозга и корой больших полушарий, например, с таламусом, мостом, средним мостом, базальными ядрами. Осуществляется эта связь при помощи крупных пучков волокон, которые внутреннюю капсулу формируют. Пучки волокон представлены широкими пластами, которые сложены из белого вещества. В них расположено огромное количество нервных волокон. Некоторая часть этих волокон обеспечивает передачу нервных сигналов к коре. Остальная часть пучков передает нервные импульсы к расположенным ниже нервным центрам.

Как устроена кора головного мозга? Зоны коры головного мозга будут представлены далее.

Строение коры

Самым большим отделом мозга является его кора. Причем зоны коры являются лишь одним типом частей, выделяемых в коре. Помимо этого кора разделена на два полушария - правое и левое. Между собой полушария соединены пучками белого вещества, формирующими мозолистое тело. Его функция - обеспечивать координацию деятельности обоих полушарий.

Классификация зон коры головного мозга по их расположению

Несмотря на то что кора имеет огромное количество складок, в общем расположение ее отдельных извилин и борозд постоянно. Главные их них являются ориентиром при выделении областей коры. К таким зонам (долям) относятся - затылочная, височная, лобная, теменная. Несмотря на то что они классифицируются по месту расположения, каждая из них имеет свои собственные специфические функции.

Слуховая зона коры головного мозга

К примеру, височная зона является центром, в котором расположен корковый отдел анализатора слуха. Если происходит повреждение этого отдела коры, может возникнуть глухота. Помимо этого в слуховой зоне расположен центр речи Вернике. Если повреждению подвергается он, то человек теряется способность к восприятию устной речи. Человек воспринимает ее как простой шум. Также в височной доле есть нейронные центры, которые относятся к вестибулярному аппарату. Если повреждаются они, нарушается чувство равновесия.

Речевые зоны коры головного мозга

В лобной доле коры сосредоточены речевые зоны. Речедвигательный центр расположен тоже здесь. Если происходит его повреждение в правом полушарии, то человек теряет способность изменять тембр и интонацию собственной речи, которая становится монотонной. Если же повреждение речевого центра произошло в левом полушарии, то пропадает артикуляция, способность к членораздельной речи и пению. Из чего еще состоит кора головного мозга? Зоны коры головного мозга имеют различные функции.

Зрительные зоны

В затылочной доле располагается зрительная зона, в которой находится центр, отвечающий на наше зрение как таковое. Восприятие окружающего мира происходит именно этой частью мозга, а не глазами. Именно затылочная зона коры ответственна за зрение, и ее повреждение может привести к частичной или полной потере зрения. Зрительная зона коры головного мозга рассмотрена. Что дальше?

Для теменной доли тоже характерны свои собственные специфические функции. Именно эта зона отвечает за способность анализировать информацию, которая касается тактильной, температурной и болевой чувствительности. Если происходит повреждение теменной области, рефлексы головного мозга нарушаются. Человек не может на ощупь распознавать предметы.

Двигательная зона

Поговорим о двигательной зоне отдельно. Следует отметить, что эта зона коры никак не соотносится с долями, рассмотренными выше. Она является частью коры, содержащей прямые связи с мотонейронами в спинном мозге. Такое название носят нейроны, непосредственно управляющие деятельностью мышц тела.

Основная двигательная зона коры больших полушарий располагается в извилине, которая называется прецентральной. Эта извилина представляет собой зеркальное отображение сенсорной зоны по многим аспектам. Между ними имеется контралатеральная иннервация. Если сказать иными совами, то иннервация направлена на мышцы, которые расположены на другой стороне тела. Исключение - лицевая область, для которой характерен контроль мышц двусторонний, расположенных на челюсти, нижней части лица.

Немного ниже основной двигательной зоны расположена дополнительная зона. Ученые полагают, что она имеет независимые функции, которые связаны с процессом вывода двигательных импульсов. Дополнительная двигательная зона также изучалась специалистами. Эксперименты, которые ставились над животными, показывают, что стимуляция этой зоны провоцирует возникновение двигательных реакций. Особенностью является то, что подобные реакции возникают даже в том случае, если основная двигательная зона была изолирована или разрушена полностью. Она также вовлечена в планирование движений и в мотивацию речи в полушарии, которое является доминантным. Ученые полагают, что при повреждении дополнительной двигательной может возникнуть динамическая афазия. Рефлексы головного мозга страдают.

Классификация по строению и функциям коры головного мозга

Физиологические эксперименты и клинические испытыния, которые проводились еще в конце девятнадцатого века, позволили установить границы между областями, на которые проецируются разные рецепторные поверхности. Среди них выделяют органы чувств, которые направлены на внешний мир (кожная чувствительность, слух, зрение), рецепторы, заложенные непосредствен в органах движения (двигательный или кинетический анализаторы).

Зоны коры, в которых располагаются разнообразные анализаторы, могут быть классифицированы по строению и функциям. Так, их выделяют три. К ним относятся: первичная, вторичная, третичная зоны коры головного мозга. Развитие эмбриона предполагает закладывание только первичных зон, характеризующихся простой цитоархитектоникой. Далее происходит развитие вторичных, третичные развиваются в самую последнюю очередь. Для третичных зон характерно самое сложное строение. Рассмотрим каждую из них немного подробнее.

Центральные поля

За долгие годы клинических исследований ученым удалось накопить значительный опыт. Наблюдения позволили установить, например, что повреждения различных полей, в составе корковых отделов разных анализаторов, могут отразиться далеко не равнозначно на общей клинической картине. Если рассматривать все эти поля, то среди них можно выделить одно, которое занимает центральное положение в ядерной зоне. Такое поле носит название центрального или первичного. Находится оно одновременно в зрительной зоне, в кинестетической, в слуховой. Повреждение первичного поля влечет за собой весьма серьезные последствия. Человек не может воспринимать и осуществлять самые тонкие дифференцировки раздражителей, влияющих на соответствующие анализаторы. Как еще классифицируются участки коры головного мозга?

Первичные зоны

В первичных зонах расположен комплекс нейронов, который наиболее предрасположен к обеспечению двусторонних связей между корковыми и подкорковыми зонами. Именно этот комплекс наиболее прямым и коротким путем соединяет кору больших полушарий с разнообразными органами чувств. В связи с этим данные зоны обладают способностью очень подробной идентификации раздражителей.

Важной общей чертой функциональной и структурной организации первичных областей является то, все они имеют четкую соматическую проекцию. Это означает, что отдельные периферические точки, например, кожные поверхности, сетчатка глаза, скелетная мускулатура, улитки внутреннего уха, имеют собственную проекцию в строго ограниченные, соответствующие точки, которые находятся в первичных зонах коры соответствующих анализаторов. В связи с этим им было дано название проекционных зон коры головного мозга.

Вторичные зоны

По-другому эти зоны называются периферическими. Такое название дано им совсем не случайно. Они находятся в периферических отделах участков коры. От центральных (первичных) вторичные зоны отличаются нейронной организацией, физиологическими проявлениями и особенностями архитектоники.

Попробуем разобраться, какие эффекты возникают, если на вторичные зоны воздействует электрический раздражитель или происходит их повреждение. Главным образом возникающие эффекты касаются наиболее сложных видов процессов в психике. В том случае, если происходит повреждение вторичных зон, то элементарные ощущения остаются в относительной сохранности. В основном наблюдаются нарушения в способности правильного отражения взаимных соотношений и целых комплексов элементов, из которых состоят различные объекты, которые мы воспринимаем. К примеру, если повреждению подверглись вторичные зоны зрительной и слуховой коры, то можно наблюдать возникновение слуховых и зрительных галлюцинаций, которые разворачиваются в определенной временной и пространственной последовательности.

Вторичные области имеют значительную важность в реализации взаимных связей раздражителей, которые выделяются при помощи первичных зон коры. Помимо этого, значительную роль они играют в интеграции функций, которые осуществляют ядерные поля разных анализаторов в результате объединения в сложные комплексы рецепций.

Таким образом, вторичные зоны представляют особую важность для реализации психических процессов в более сложных формах, которые требуют координации и которые связаны с подробным анализом соотношений между предметными раздражителями. В ходе этого процесса устанавливаются специфические связи, которые носят название ассоциативных. Афферентные импульсы, поступающие в кору от рецепторов разных внешних органов чувств, достигают вторичных полей посредством множества дополнительных переключений в ассоциативном ядре таламуса, который также называется зрительным бугром. Афферентные импульсы, следующие в первичные зоны, в отличие от импульсов, следуют во вторичные зоны, достигают их путем, который короче. Он реализован посредством реле-ядра, в зрительном бугре.

Мы разобрались, за что отвечает кора головного мозга.

Что такое таламус?

От таламических ядер к каждой доле мозговых полушарий подходят волокна. Таламус является зрительным бугром, расположенным в центральной части переднего отдела мозга, состоит из большого количества ядер, каждое из которых осуществляет передачу импульса в определенные участки коры.

Все сигналы, которые поступают к коре (исключение составляют только обонятельные), проходят через релейные и интегративные ядра зрительного бугра. От ядер таламуса волокна направляются к сенсорным зонам. Вкусовая и соматосенсорная зоны расположены в теменной доле, слуховая сенсорная зона - в височной доле, зрительная - в затылочной.

Импульсы к ним поступают, соответственно, от вентро-базальных комплексов, медиальных и латеральных ядер. Моторные зоны связаны с вентеральным и вентролатеральным ядрами таламуса.

Десинхронизация ЭЭГ

Что произойдет, если на человека, находящегося в состоянии полного покоя, подействует очень сильный раздражитель? Естественно, что человек полностью сконцентрируется на данном раздражителе. Переход умственной деятельности, который осуществляется от состояния покоя к состоянию активности, отражается на ЭЭГ бета-ритмом, который замещает альфа-ритм. Колебания становятся более частыми. Такой переход называют десинхронизацией ЭЭГ, появляется он в результате поступления сенсорного возбуждения в кору от неспецифических ядер, расположенных в таламусе.

Активирующая ретикулярная система

Диффузную нервную сесть составляют неспецифические ядра. Находится эта система в медиальных отделах таламуса. Он является передним отделом активирующей ретикулярной системы, регулирующей возбудимость коры. Разнообразные сенсорные сигналы способны активировать данную систему. Сенсорные сигналы могут быть как зрительными, так и обонятельными, соматосенсорными, вестибулярными, слуховыми. Активизирующая ретикулярная система представляет собой канал, который передает к поверхностному слою коры данные сигналов через расположенные в таламусе неспецифические ядра. Возбуждение АРС необходимо для того, чтобы человек был способен поддерживать состояние бодрствования. Если в данной системе возникают нарушения, то могут наблюдаться коматозные сноподобные состояния.

Третичные зоны

Между анализаторами коры головного мозга имеются функциональные отношения, которые имеют еще более сложную структуру, чем та, что была описана выше. В процессе роста происходит взаимное перекрытие полей анализаторов. Такие зоны перекрытия, которые образуются у концов анализаторов, носят название третичных зон. Они являются самыми сложными типами объединения деятельности слухового, зрительного, кожно-кинестетического анализаторов. Расположены третичные зоны за границами собственных зон анализаторов. В связи с этим повреждение их не оказывает выраженного эффекта.

Третичные зоны представляют собой особые корковые области, в которых собраны рассеянные элементы разных анализаторов. Они занимают весьма обширную территорию, которая разделена на области.

Верхняя теменная область интегрирует движения всего тела с анализатором зрительным, формирует схему тел. Нижняя теменная область объединяет обобщенные формы сигнализации, которые связаны с дифференцированными предметными и речевыми действиями.

Не менее важной является височно-теменно-затылочная область. Отвечает она за усложненные интеграции слухового и зрительного анализаторов с устной и письменной речью.

Стоит отметить, что по сравнению с двумя первыми зонами, для третичных характерны наиболее сложные цепи взаимодействия.

Если опираться на весь изложенный выше материал, то можно сделать вывод о том, что первичные, вторичные, третичные зоны коры у человека носят высокую специализацию. Отдельно стоит подчеркнуть тот факт, что все три корковые зоны, которые мы рассматривали, в нормально функционирующем мозге совместно с системами связей и образованиями подкоркового расположения функционируют как единое дифференцированное целое.

Мы подробно рассмотрели зоны и отделы коры головного мозга.

Мозг человека обладает небольшим верхним слоем в толщину приблизительно 0,4 см. Это кора головного мозга. Она служит для выполнения большого количества функций, используемых в различных жизненных аспектах. Непосредственно такое воздействие коры чаще всего влияет на поведение человека и его сознание.

Кора мозга обладает средней толщиной примерно 0,3 см и довольно внушительным объемом благодаря присутствию связующих каналов с ЦНС. Информация воспринимается, обрабатывается, принимается решение за счет большого количества импульсов, которые проходят сквозь нейроны, словно по электрической цепи. В зависимости от различных состояний в коре мозга осуществляется выработка электрических сигналов. Уровень их активности можно определить по самочувствию человека и описать посредством амплитудных и частотных показателей. Существует факт, что множество связей локализуется в участках, которые участвуют в обеспечении сложных процессов. Кроме сказанного, кора головного мозга человека не считается оконченной по своей структуре и развивается на протяжении всего периода жизни в процессе формирования человеческого интеллекта. При получении и обработке информационных сигналов, которые поступает в мозг, человеку обеспечиваются реакции физиологического, поведенческого, психического характера из-за функций коры головного мозга. К таковым относятся:

  • Взаимодействие органов и систем в организме с окружающей средой и друг с другом, надлежащее протекание процессов обмена.
  • Надлежащий прием и обрабатывание информационных сигналов, их осознание посредством мыслительных процессов.
  • Поддержание взаимосвязи разных тканей и структур, которые составляют органы в теле человека.
  • Образование и функционирование сознания, интеллектуальный и творческий труд индивида.
  • Контроль за активностью речи и процессами, которые связаны с психоэмоциональными ситуациями.

Необходимо сказать о неполном исследовании места и значения передних отделов коры больших полушарий в обеспечении работы организма человека. О таких зонах известен факт об их низкой восприимчивости к наружному влиянию. К примеру, воздействие на эти участки электрического импульса не проявляется яркими реакциями. Как считают некоторые ученые, их функциями являются самосознание, наличие и характер специфических особенностей. Люди с пораженными передними зонами коры имеют проблемы с социализацией, у них утрачивается интерес в сфере труда, отсутствует внимание к своему внешнему виду и мнению остальных. Другие возможные эффекты:

  • утрата возможности концентрировать внимание;
  • частично либо полностью выпадают творческие умения;
  • глубинные психоэмоциональные нарушения индивида.

Слои коры

Осуществляемые корой функции часто обуславливаются устройством структуры. Строение коры головного мозга отличается своими особенностями, которые выражаются в разном количестве слоев, размерах, топографии и строении формирующих кору нервных клеток. Ученые различают несколько разных видов слоев, которые, взаимодействуя друг с другом, способствуют функционированию системы полностью:

  • молекулярный слой: он создает большое количество хаотичным образом сплетенных дендритных образований с небольшим содержанием клеток, по форме похожих на веретено, которые отвечают за ассоциативное функционирование;
  • внешний слой: выражен большим числом нейронов, которые имеют разнообразную форму и высокое содержание. За ними расположены внешние пределы структур, по форме напоминающие пирамиду;
  • внешний слой пирамидального вида: содержит в себе нейроны незначительных и существенных габаритов во время более глубокого нахождения больших. По форме эти клетки напоминают конус, от верхней точки отходит дендрит, который имеет максимальные габариты, посредством разделения на мелкие образования связываются нейроны, содержащие серое вещество. По мере приближения к коре полушарий, ветвления отличаются небольшой толщиной и формируют структуру, напоминающую по форме веер;
  • внутренний слой зернистого вида: содержит в себе нервные клетки, которые имеют маленький размер, располагаются на определенном расстоянии, между ними идут сгруппировавшиеся структуры волокнистого вида;
  • внутренний слой пирамидального вида: включает в себя нейроны, которые обладают средними и большими габаритами. Верхние окончания дендритов могут доходить до молекулярного слоя;
  • покров, который содержит в себе нейронные клетки, обладающие формой веретена. Свойственно для них то, что их часть, которая находится в самой низкой точке, может достигнуть уровня белого вещества.

Разнообразные слои, которые включает в себя кора больших полушарий головного мозга, различаются друг с другом по форме, нахождению и предназначению элементов их строения. Совместное действие нейронов в форме звезды, пирамиды, веретена и ветвистого видов между разнообразными слоями формирует больше 50 полей. Невзирая на то, что четких пределов у полей не существует, их взаимодействие дает возможность осуществлять регулировку большого количества процессов, которые сопряжены с принятием нервных импульсов, обрабатыванием информации и формированием встречной реакции на раздражители.

Строение коры большого мозга довольно сложное и обладает своими особенностями, выражающимися в разном количестве покровов, габаритов, топографии и структуре клеток, которые образовывают слои.

Области коры

Локализация функций в коре головного мозга многими специалистами рассматривается по-разному. Но большинство исследователей пришло к выводу, что кору больших полушарий можно поделить на несколько основных участков, которые включают в себя корковые поля. По осуществляемым функциям данное строение коры головного мозга разделяется на 3 области:

Зона, которая сопряжена с обрабатыванием импульсов

Данная область сопряжена с обрабатыванием импульсов, которые поступают сквозь рецепторы от зрительной системы, обоняния, осязания. Основная часть рефлексов, которые сопряжены с моторикой, обеспечивается клетками пирамидальной формы. Участок, несущий ответственность за принятие информации мышц, обладает отлаженным взаимодействием между разнообразными слоями коры головного мозга, что играет особую роль на стадии надлежащей обработки идущих импульсов. Когда кора головного мозга повреждается на данном участке, это провоцирует расстройства в отлаженной работе сенсорных функций и действий, которые неразрывны с моторикой. Внешне сбои в двигательном отделе могут проявиться при осуществлении непроизвольных движений, судорожных подергиваниях, тяжелых формах, ведущих к параличу.

Зона сенсорного восприятия

Данный участок несет ответственность за обрабатывание сигналов, которые поступают в мозг. По своему строению он является системой взаимодействия анализаторов в целях установления обратной связи на воздействие стимулятора. Учеными выделяются несколько участков, которые отвечают за восприимчивость к импульсам. К ним относятся затылочная, обеспечивающая зрительную обработку; височная сопряжена со слухом; зона гиппокампа - с обонянием. Участок, который отвечает за обрабатывание информации вкусовых стимуляторов, находится возле темени. Там происходит локализация центров, несущих ответственность за принятие и обрабатывание тактильных сигналов. Сенсорная способность напрямую зависит от числа нейронных связей на данном участке. Приблизительно указанные зоны могут занимать до 1/5 от общего размера коры. Поражение такой зоны повлечет за собой неправильное восприятие, что не даст возможность вырабатывать встречный сигнал, адекватный влияющему на него раздражителю. К примеру, сбой в работе слуховой зоны не всегда провоцирует глухоту, но способен вызывать определенные эффекты, которые искажают надлежащее восприятие информации. Подобное выражается в невозможности уловить длину либо частотность звука, его длительность и тембр, сбои фиксации воздействий с незначительным временем действия.

Ассоциативная зона

Указанная зона делает возможным контакт между сигналами, которые принимают нейроны в сенсорной части и моторикой, представляющей из себя встречную реакцию. Данный отдел образовывает осмысленные рефлексы поведения, участвует в обеспечении их фактической реализации и им в большей степени охватывается кора головного мозга. По районам нахождения выделяют передние отделы, которые располагаются возле лобных частей, и задние, занимающие промежуток посреди висков, темени и затылка. Человеку свойственно сильное развитие задних отделов районов ассоциативного восприятия. Эти центры имеют важное значение, обеспечивающее осуществление и обработку речевой деятельности. Поражение переднеассоциативного участка провоцирует сбои возможности осуществления аналитической функции, прогнозирования, отталкиваясь от фактов либо раннего опыта. Сбой в работе зоны задней ассоциации осложняет ориентацию в пространстве, замедляет абстрактное объемное мышление, конструирование и надлежащую трактовку трудных зрительных моделей.

Особенности неврологической диагностики

В процессе неврологической диагностики большое внимание уделяется нарушениям движений и восприимчивости. Поэтому обнаружить сбои в работе проводящих протоков и начальных зон намного проще, чем повреждения ассоциативной коры. Нужно сказать, что неврологическая симптоматика способна отсутствовать даже при обширном поражении лобного, теменного либо височного участка. Нужно, чтобы оценка когнитивных функций была столь же логична и последовательна, как и неврологическая диагностика.

Подобный вид диагностики направлен на закрепленные взаимосвязи функции коры головного мозга и структуры. Например, в период повреждения стриарной коры либо зрительного тракта в подавляющем большинстве случаев есть контралатеральная гомонимная гемианопсия. В той ситуации, когда поврежден седалищный нерв, не наблюдают ахиллов рефлекс.

Изначально считалось, что таким образом могут действовать и функции ассоциативной коры. Бытовало предположение, что существуют центры памяти, восприятия пространства, обработки слов, потому посредством особых тестов возможно определить локализацию повреждения. Позже появились мнения касательно распределяющихся нейронных систем и функциональной направленности в их границах. Данные представления говорят про то, что за сложные когнитивные функции коры отвечают распределенные системы – замысловатые нейронные контуры, внутри которых находятся корковые и подкорковые образования.

Последствия повреждений

Специалисты доказали, что благодаря взаимосвязи нейронных структур друг с другом, в процессе поражения одного из вышеуказанных участков наблюдается частичное либо полное функционирование иными структурами. В результате неполной потери способности к восприятию, обработке информации либо воспроизведению сигналов система способна определенный промежуток времени оставаться работоспособной, имея ограниченные функции. Подобное может произойти благодаря восстановлению взаимосвязей между неповрежденными участками нейронов по методу распределительной системы.

Но существует вероятность обратного эффекта, в процессе которого поражение одного из отделов коры ведет к нарушениям ряда функций. Как бы ни было, сбой в нормальном функционировании такого важного органа считается опасным отклонением, при формировании которого следует без промедлений обратиться за помощью к врачам в целях избежания последующего развития расстройств. К наиболее опасным сбоям в функционировании такой структуры относят атрофию, которая связана со старением и отмиранием части нейронов.

Самыми применяемыми людьми способами обследования считаются КТ и МРТ, энцефалография, диагностика посредством УЗИ, проведение рентгена и ангиографии. Нужно сказать, что нынешние способы исследования дают возможность обнаружить патологию в функционировании мозга на предварительной стадии, если вовремя обратиться к врачу. В зависимости от типа расстройства, есть возможность восстановить поврежденные функции.

Кора головного мозга отвечает за мозговую деятельность. Подобное ведет к переменам в строении самого человеческого мозга, поскольку его функционирование стало значительно сложнее. Поверх зон мозга, сопряженных с органами чувств и двигательным аппаратом, сформировались зоны, очень плотно наделенные ассоциативными волокнами. Подобные участки нужны в целях сложного обрабатывания поступившей в мозг информации. В итоге образования коры головного мозга приходит следующий этап, на котором роль ее работы резко вырастает. Кора головного мозга у человека является органом, выражающим индивидуальность и сознательную деятельность.

ФУНКЦИОНАЛЬНАЯ АНАТОМИЯ ГОЛОВНОГО МОЗГА

Головной мозг с окружающими его оболочками располагается в полости мозгового черепа и состоит из ствола и больших полушарий. Масса мозга взрослого человека составляет 1,1-2 кг. Небольшой и более древний ствол мозга расположен под большими полушариями (на основании мозгового черепа) и состоит из продолговатого мозга, заднего мозга (моста), среднего и промежуточного мозга. Ствол имеет дорзальную и вентральную поверхности. В вентральных отделах ствола в белом веществе проходят двигательные проводящие пути, а в дорзальных отделах - чувствительные. От ствола отходят 12 пар черепных нервов. Функции ствола - проводниковая и рефлектор­ная. Промежуточный мозг выполняет также низшие психические функции. Большие полушария составляют основную массу мозга и выполняют проводниковые, рефлекторные и высшие психические функции, формирующие мышление и сознание.

Продолговатый мозг

Продолговатый мозг состоит из белого вещества (снаружи) и се­рого вещества (внутри). Его длина составляет 2,5 см. Внизу, на уров­не большого затылочного отверстия, продолговатый мозг переходит в спинной мозг, вверху - граничит с мостом, образуя вместе с ним на дорзальной поверхности ромбовидную ямку. Белое вещество про­долговатого мозга по строению напоминает белое вещество спинного мозга, имеет те же борозды и канатики. На вентральной поверхности различают пирамиды и оливы, на дорзальной - тонкий и клиновид­ный пучки и их ядра, от которых идут нижние ножки мозжечка.

Серое вещество включает ядра IX-XII пар черепных нервов, рас­положенные на дне ромбовидной ямки; ядра олив (центры вестибулярного аппарата); ядра тонкого и клиновидного канатиков, залега­ющие в глубине одноименных бу­горков. Эти бугорки ограничивают нижний угол ромбовидной ямки; их относят к проводящим путям глубокой чувствительности. В цен­тральном отделе продолговатого мозга расположены ядра ретику­лярной формации.

Белое вещество продолговатого мозга представлено восходящими (чувствительными) путями; нис­ходящими (двигательными) экс­трапирамидными и пирамидными путями, корешками IX-X IIпар че­репных нервов (рис. 6.4).

Функции серого вещества продолго­ватого мозга

Безусловные рефлексы, замы­кающиеся на уровне продолговато­го мозга.

Защитные рефлексы - рефлек­сы кашля, чихания, моргания,

Пищевые рефлексы, регулирую­щие акты глотания, сосания.

Сердечно-сосудистые рефлексы: сосудодвигательный центр регулирует деятельность сердца и кровеносных сосудов.



Дыхательные рефлексы: дыхательный центр обеспечивает авто­матическую вентиляцию лёгких, состоит из центров вдоха и выдоха.

Вестибулярные рефлексы - установочные рефлексы позы - осуществляют координацию движений.

Полость продолговатого мозга (IVжелудочек), заполненная спин­номозговой жидкостью, внизу сообщается с центральным каналом спинного мозга, вверху - с водопроводом среднего мозга. Передняя стенка IVжелудочка образована ромбовидной ямкой, сзади располо­жен мозжечок.

Ромбовидная ямка - дно желудочка - образована продолговатым мозгом и мостом. В свою очередь, IV желудочек представляет полость заднего и продолговатого мозга. Сзади эта полость сообщается с каналом спинного мозга, впереди - с сильвиевым водопроводом среднего мозга. Верхний и нижний угол ромбовидной ямки соединяет глубокая срединная борозда. Серое вещество ромбовидной ямки образует несколько ядер V-XII пар черепных нервов, разделенных белым веществом. Двигательные ядра расположены медиально, а чувствительные - латерально; между ними локализованы вегетативные ядра сосудодвигательного и дыхательного центров.

Варолиев мост - толстый поперечный валик, расположенный впереди продолговатого мозга, позади среднего мозга, под мозжечком, Белое вещество моста локализовано в основном снаружи, а серое - внутри. На дорсальной поверхности мост образует верхний угол ромбовидной ямки, ограниченный верхними ножками мозжечка. По бокам мост сужается, переходя в средние ножки мозжечка, на границе скоторыми видны корешки тройничного нерва (правого и левого). На вентральной поверхности моста расположена широкая основная бо­розда, в ней - одноименная артерия. В глубокую борозду, отделяю­щую мост от пирамид и олив, выходят корешки VI, VII и VIII пар че­репных нервов. Серое вещество моста представлено ядрами V-V IIIпар черепных нервов, ядрами ретикулярной формации и собственными ядрами моста (осуществляют связь коры больших полушарий с моз­жечком и передают импульсы из одних отделов мозга в другие). В бе­лом веществе моста проходят проводящие пути



Мозжечок

Мозжечок, малый мозг, располагается в задней черепной ямке (дорсальнее моста и верхней части продолговатого мозга). Свер­ху над мозжечком нависают затылочные доли больших полушарий, отделённые от него поперечной щелью большого мозга. В мозжеч­ке различают непарную срединную часть (червь) и два полушария. Узкими бороздами червь и мозжечок разделены на мелкие извили­ны (листки), значительно увеличивающие поверхность. Полушария и червь покрыты корой мозжечка, состоящей из трёх слоев нейро­нов. Кора, кроме вставочных нейронов, содержит 15 млн. клеток

Пуркинье (грушевидных нейронов), связанных с двигательными областями коры больших полушарий и подкорковыми моторными центрами.

К коре прилежит белое вещество мозжечка, имеющее вид раз­ветвлённого дерева («дерево жизни»). В толще белого вещества ло­кализуется ядро шатра, связанное с проприорецепторами мышц и вестибулярным аппаратом, и парные ядра мозжечка: зубчатые, пробковидные, шаровидные. С другими отделами мозга мозжечок свя­зан проводящими путями, расположенными в его ножках: верхних, нижних и средних (описаны выше).

Основная функция мозжечка - координация сложных двига­тельных актов: безусловно-рефлекторных, автоматических, осу­ществляющихся без участия сознания, и условно-рефлекторных, осознаваемых организмом. В мозжечок поступают импульсы от проприоцептивных, вестибулярных, тактильных, зрительных и слу­ховых рецепторов.

При разрушении медиальных, более древних отделов мозжечка (червя и др.), нарушается равновесие, и возникают такие вестибулярные симптомы, как приступы головокружения, тошнота, рвота, нистагм (спонтанные колебательные движения глазных яблок). Таким больным трудно стоять и ходить, особенно в темноте, когда отсутствует зрительный контроль положения тела в пространстве. Эту недостаточную координацию движений рук и ног («походка пьяного») называют мозжечковой атаксией. При повреждении полушарий мозжечка происходит нарушение целенаправленных движений во время их выполнения из-за недостаточности информации, поступающей от коры больших полушарий. Когда человек с такими нарушениями пытается дотронуться до предмета, его рука дрожит тем сильнее, чем ближе предмет. Поэтому такой пациент не может выполнить пальценосовую или пяточно-коленную пробы. При проведении указанных проб человека просят прикоснуться к носу или в позе лёжа провести пяткой одной о ноги по гребню большеберцовой кости другой ноги до колена. Глаза при этом должны быть закрыты для устранения зрительного контроля. Нарушается сложная последовательность выполнения движений (синергия), затруднено чередование противоположных движений и чёткое произношение слов (дизартрия). Речь становится замедлен­ной имонотонной.

Таким образом, удаление или повреждение мозжечка нарушает корковый механизм произвольных движений, но не приводит к па­раличу, делающему их невозможными.

Средний мозг

Средний мозг, расположенный между мостом и промежуточным мозгом, состоит из крыши и ножек (рис. 6.6).

Крыша среднего мозга - четверохолмие - состоит из четырёх хол­миков. Между верхними холмиками расположен эпифиз. От каждо­го холмика кнаружи отходит валик - ручка холмика. Ручка верхнего холмика направляется к латеральному коленчатому телу, а ручка ниж­него холмика - к медиальному коленчатому телу. Верхние холмики четверохолмия илатеральные коленчатые тела выполняют функции подкорковых зрительных центров, а нижние холмики и медиальные коленчатые тела представляют подкорковые слуховые центры.

Ножки мозга расположены на основании мозга в виде двух бе­лых толстых валиков, выходящих из моста к полушариям переднего

мозга. На медиальной поверхности ножек из своей борозды выхо­дят корешки III пары черепных нервов, кнаружи от них - корешки IV пары черепных нервов.

Серое вещество представлено несколькими парными ядрами: чёрной субстанцией, красными ядрами, промежуточным ядром ретикулярной формации, ядрами холмиков (верхних и нижних) ядрами Ш-1Упар черепных нервов и среднемозговым ядром трой­ничного нерва. Нейроны чёрного вещества содержат чёрный пиг­мент - меланин. Меланин делит ножки мозга на дорсальный от­дел - покрышку среднего мозга ивентральный отдел - основание ножки мозга.

Функции среднего мозга

Подкорковые центры зрения (ориентировочный рефлекс) располагаются в верхних холмиках.

Подкорковые центры слуха (ориентировочный рефлекс) локализуются в нижних холмиках.

Регуляция тонуса мышц при осуществлении автоматиче­ских тонических рефлексов, возникающих при изменении положения тела и головы в пространстве (красные ядра, моз­жечок, вестибулярные ядра продолговатого мозга, моторные нейроны спинного мозга).

Средний мозг контролирует ряд вегетативных функций: жевание, глотание, дыхание, АД.

Белое вещество представлено восходящими (чувствительными) и нисходящими (двигательными) проводящими путями.

Полость - водопровод среднего мозга (сильвиев водопровод) - узкий канал длиной 1,5 см, соединяющий полости III и | IV желудочков.

6.2.5. Промежуточный мозг Промежуточный мозг расположен между большими полушариями и средним мозгом. В нём анатомически и функционально й выделяют четыре части: таламус, эпиталамус, метаталамус и гипоталамус. Таламус (зрительный бугор) - парное образование овальной формы. Сверху и медиально от таламуса расположен III желудочек, снизу и латерально к нему прилежат полушария головного мозга. Переднюю часть таламуса называют передним бугорком, а заднюю - подушкой таламуса. Таламус состоит из серого вещества, формирующего до 40 ядер (передних, медиальных, задних). Таламус - коллектор почти всех видов чувствительности (кроме обонятельной). Он получает импульсы от всех рецепторов (кроме обонятельных). В таламусе происходит сопоставление информации, оценка ее биологического значения и передача наиболее важной ин­формации в кору больших полушарий. Таламус участвует в регуляции эмоционального поведения и организации процессов внимания, по­вышая тонус конкретных отделов коры.

При повреждении таламуса отмечают локальное выпадение чувс­твительности из-за нарушения афферентных проводящих путей. Та­ламус принимает участие в возникновении ощущений и формирова­нии болевой чувствительности.

Эпиталамус представлен шишковидным телом (эпифизом), ко­торый на двух поводках расположен над верхними холмиками чет­верохолмия. Эпифиз как железа внутренней секреции рассмотрен в модуле 10.

Метаталамус расположен позади таламуса и представлен лате­ральным и медиальным коленчатыми телами. Эти тела, соединённые ручками с верхним и нижним холмиками среднего мозга, на разрезе состоят из серого вещества. Латеральные коленчатые тела выполня­ют функции подкорковых зрительных центров. Медиальные колен­чатые тела - слуховые центры.

Гипоталамус расположен на вентральной поверхности ствола и представлен зрительным перекрестом, зрительными трактами, сос­цевидными телами, серым бугром, воронкой и гипофизом. Зрительные тракты и перекрест являются проводящими зрительными путями.

Сосцевидные тела (подкорковые центры обоняния) расположены | между ножками мозга, покрыты белым веществом, внутри состоят из серого вещества.

Серый бугор и воронка состоят из нейронов, в том числе секреторных, формирующих около 30 ядер. Как железа внутренней секреции гипоталамус (наряду с гипофизом) рассмотрен в модуле 10. Гипоталамус - высший подкорковый центр ВНС - регулирует все вегетативные функции («гипоталамус - вегетативный мозг»), железы внутренней секреции; вырабатывает нейрогормоны: вазопрессин, окситоцин, рилизинг-гормоны и др. В гипоталамусе происходит непосредственное взаимодействие нервной и эндокринной систем. Здесь интегрируются вегетативные, соматические и эндокринные функции и обеспечивается гомеостаз - постоянство внутренней среды. Помимо этого, гипоталамус принимает участие в терморегуляции и регуляции сна и бодрствования. Ги­поталамус также регулирует мотивированное поведение и защитные реакции (жажда, голод, насыщение, страх, ярость, удовольствие и неудовольствие).

Гипофиз - главная железа внутренней секреции, регулирует рабо­ту эндокринных желез (см. модуль 10).

Полость промежуточного мозга - III желудочек - расположен по средней линии в виде узкой продольной щели. Впереди III желудочек сообщается с боковыми желудочками, сзади он переходит в сильвиев водопровод.

Ретикулярная формация

В центральных областях продолговатого мозга, среднего мозга, моста, а также в верхних шейных сегментах расположена сеть ней­ронов - ретикулярная формация, состоящая из огромного числа нейронов различной формы и размеров. Отростки этих нейронов ветвятся в восходящем и нисходящем направлениях, а сами нейроны формируют более 40 ядер. В ретикулярную формацию входят ответ­вления чувствительных проводящих путей и отростки нейронов из различных отделов мозга.

Нисходящие ретикулоспинальные пути регулируют движения, позу и вегетативные рефлексы. Ретикулокортикальные пути подде­рживают тонус коры, регулируют состояние бодрствования, внимание и проявления ориентировочных рефлексов, возникающих при действии неожиданного раздражителя. Влияние на кору может быть как возбуждающим, так и тормозящим. |

Лимбическая система

Лимбическая система объединяет отделы мозга, которые тесно » связаны между собой, выполняют общую приспособительную реакцию и расположены в основном по краям медиальной поверхности | больших полушарий. К лимбической системе относят такие струк- ^ туры конечного и промежуточного мозга, как гипиокамп, поясную х извилину, миндалину, обонятельный мозг, эпифиз и др. Лимбиче- ш екая система сообщается с новой корой в области лобных и височных 5 долей. Височные доли направляют импульсы к миндалине и гипио- * кампу. Лобные доли регулируют работу лимбической системы. Все « отделы этой системы взаимосвязаны и находятся в сложном взаимо- ™ действии с другими структурами мозга. *"

Лимбическую систему считают центром регуляции вегетативных ^ и соматических функций. Она определяет мотивации (побуждения) » деятельности человека. Лимбическая система направляет ориенти- -ровочно-исследовательскую работу. Гиппокамп играет важную роль в поддержании гомеостаза, осуществлении репродуктивных функций, формировании эмоционально окрашенного поведения, в обучении, памяти, регуляции сна и бодрствования. В лимбической системе об­наружены центры удовольствия и неудовольствия, приближения и избегания, вознаграждения и наказания. Вместе с новой корой боль­ших полушарий лимбическая система регулирует интегративные функции ЦНС, связанные с психической деятельностью человека.

Конечный мозг

Конечный мозг (большой или передний мозг; большие полушария) состоит из двух полушарий (правого и левого), разделённых продоль­ной щелью. От мозжечка полушария отделены поперечной щелью. Большую белую спайку, расположенную над промежуточным моз­гом и соединяющую оба полушария, называют мозолистым телом. В каждом полушарии различают поверхности: верхнелатеральную, вы­пуклую, нижнюю, сложного рельефа и медиальную, плоскую.

Каждое полушарие состоит из пяти долей: лобной, височной, те­менной, затылочной и островка, погружённого в глубину латераль­ной борозды.

2 Поверхность каждой доли имеет множество извилин и борозд § (рис. 6.7). Многие из них индивидуальны и непостоянны. Постоян-о ные извилины и борозды большинство людей имеют с рождения. ° Так, лобная и теменная доли отделены друг от друга центральной ° (роландовой) бороздой. Извилина, расположенная впереди ролан-2 довой борозды - предцентральная (предцентральная) извилина лоб-| ной доли, позади борозды - постцентральная (постцентральная) из- ° вилина теменной доли. Эти извилины ограничены одноимёнными ^ бороздами. Теменная и затылочная доли разделены теменно-заты-§ лочной бороздой, заметной только на медиальной поверхности по-^ лушарий. Перпендикулярно к ней расположена шпорная борозда 5 затылочной доли. Височную долю от лобной и теменной отделяет §. латеральная (сильвиева) борозда. В лобной доле различают три пос-х тоянные извилины: верхнюю, среднюю и нижнюю; они перпен-в дикулярны предцентральной извилине и разделены бороздами. В ™ височной доле расположены верхняя, средняя и нижняя височные извилины. На медиальной поверхности полушария над мозолистым телом располагается борозда мозолистого тела. Направляясь вниз и вперед, она продолжается в

ка»). Выше борозды мозолистого тела залегает поясная борозда,©

ограничивающая расположенную книзу от неё поясную извилину. ж

Продолжением поясной извилины книзу и кпереди является изви- |

лина гиппокампа (или парагиппокампальная извилина), ограничен- »

ная сверху бороздой гиппокампа. х

6.2.9. Строение коры больших полушарий »

Сверху полушария покрыты плащом из серого вещества - корой. |

Толщина коры составляет 1,3-4,5 мм, общий объём - 600см\ Бо- ^

розды и извилины увеличивают общую площадь коры до 2200 см 2 . Ц

В состав коры входит около 10 млрд нейронов и множество клеток §

нейроглии. 5

Более 90% коры имеет шестислойное строение, характерное для *"

филогенетически новой коры, впервые возникшей у млекопитаю- Ц

щих. Более древняя кора - в основном трёхслойная - погружена в §

глубину височных долей (обонятельная зона). о

По функции различают чувствительные, двигательные и вста- 5

вочные корковые нейроны. При всём многообразии форм нейроны г новой коры можно разделить на пирамидные клетки (их аксоны вы­ходят из коры, осуществляют связи с другими отделами мозга) и звёзд­чатые клетки (их аксоны не выходят за пределы коры, осуществляют только внутрикорковые связи). На нейронах коры обнаружены сотни синапсов, возбуждающих и тормозных. Норадреналин, дофамин, аминокислоты и некоторые другие вещества служат медиаторами корковых нейронов.

По плотности, расположению и форме нейронов - цитоар-хитектонике - К. Бродман ещё в XIX веке разделил кору на 50 по­лей. Эти поля, выделенные по гистологическим признакам, в ос­новном совладают с проекционными зонами коры, которым фи­зиологи и клиницисты «приписывают» определённые функции. Эти зоны И.П. Павловым названы корковыми концами анали­заторов. Импульсы от рецепторов к корковым концам анализа­торов (в них происходит высший анализ и интеграция функций) поступают по проводящим путям. Различают сенсорные (чувст­вительные), моторные (двигательные) и ассоциативные (связую­щие) зоны.

Кроме первичных зон, непосредственно связанных с соответс­твующими рецепторами, в коре обнаружены зоны, нейроны кото­рых не имеют подобной узкой специализации. При их поврежде-

2 нии процессы восприятия слуховых, зрительных и других раздра-| жителей в целом не нарушаются (в отличие от последствий повреж-

0 дения первичных зон). Поэтому в коре также выделены вторичные х и третичные (ассоциативные) поля. Эти поля имеют существенное § значение для контроля психической деятельности человека. Про-^ цессы психической деятельности осуществляются в двух областях

1 мозга, расположенных на стыке корковых зон разных анализато-Й ров. Первая зона - теменно-височно-затылочная - специфична я для человека и расположена преимущественно в теменной области, я на стыке сенсорного, зрительного и слухового анализаторов. Вто-ё рая область локализована в лобной доле, кпереди от предцентраль-§ ной извилины.

з- У человека лобная область обширнее и лобные доли массивнее, >, чем у остальных млекопитающих. При повреждении лобных долей. нарушается произвольная регуляция высших психических функций, щ расстраивается стратегия поведения. При массивных нарушениях больные не способны ни следовать какой-либо программе поведе­ния, ни создавать её. У них грубо нарушены целенаправленные дейс­твия, внимание, память, абстрактное мышление. В целом поведение таких больных примитивно и непредсказуемо.

При повреждении теменной области нарушаются процессы узнава­ния, интеллектуальная переработка и хранение информации, поступив­шей в кору по афферентным проводящим путям. Хотя поражение тре­тичных зон не вызывает существенных нарушений зрения, слуха и т.д., но у больных резко нарушается пространственная ориентировка (осо­бенно лево-правая), в связи с чем в значительной степени утрачивают­ся навыки самообслуживания, профессиональные знания и умения. К участкам коры, свойственным только человеку, относят также асимметричные зоны, контролирующие речь.

Функциональные зоны коры больших полушарий

Зона кожной и глубокой чувствительности (сенсорный анализатор) расположена в постцентральной извилине, где воспринимаются им­пульсы, поступившие от кожи и проприорецепторов мышц, связок, суставных сумок. В верхней части извилины проецируются нижние конечности, в средней части - верхние конечности, в нижней ча­сти - лицо, губы, внутренние органы (рис. 6.8). Проекции органи­зованы по принципу значимости и управляемости функций: чем они обширнее, тем больше площадь проекции. Наибольшая площадь

принадлежит корковому представительству областей пальцев и рта. При повреждении постцентральной извилины отмечают потерю чувствительности в противоположной половине тела. Характер дви­жений тоже изменяется вследствие утраты прямой и обратной связи с проприорецепторами работающих мышц.

Корковая зона двигательного анализатора расположена в предцент-ральной извилине. Её нейроны генерируют импульсы, регулирующие произвольные движения. В V слое здесь расположены гигантские пи­рамидные клетки Беца (их аксоны образуют пирамидные пути про­извольных движений). Участки тела человека спроецированы в пред-центральной извилине (как и в постцентральной извилине) «вверх ногами». Корковое представительство особенно значительно у мышц лица, кисти и стопы (рис. 6.9). При повреждении предцентральной извилины отмечают паралич мышц на противоположной стороне тела. При повреждении вторичных, так называемых премоторных зон, прилежащих к областям конечностей, нарушаются сложные двигательные навыки, приобретаемые в течение жизни: например,

квалифицированная медицинская сестра не может выполнить ранее хорошо известные ей профессиональные движения.

Регуляция произвольных движений осуществляется с помощью спинного продолговатого, среднего, промежуточного мозга, коры больших полушарий - сенсорного, моторного, зрительного анализа­торов и ассоциативных областей.

При участии спинного, продолговатого, среднего и проме­жуточного мозга происходит регуляция безусловно-рефлек­торных, непроизвольных, движений (тонуса мышц, автома­тических движений).

При участии теменной, а также премоторной областей и в целом коры больших полушарий осуществляется регуляция условно-рефлекторных сложных двигательных актов: ходь­бы, бега, прыжков, тонких движений пальцев рук при пись­ме, игре на музыкальных инструментах, профессиональной деятельности.

Слуховая зона расположена в верхней височной извилине.

Зрительная зона расположена в затылочных извилинах по краям шпорной борозды.

Двигательная зона устной речи (центр Брока), координиру- ,© ющая необходимую для членораздельной речи деятельность | речевого аппарата, расположена в нижней лобной извилине. § При повреждении этого центра отмечают моторную афазию » (нарушение артикуляции речи). Слуховая зона устной речи (центр Вернике), контролиру-

ю ющая понимание слов, расположена в верхней височной 5

извилине рядом со слуховой зоной. При повреждении этого центра возникает сенсорная афазия (расстройство понима­ния устной речи). ™

Обонятельная и вкусовая зоны расположены на медиальной -а поверхности височных долей. ^

Ассоциативные или неспецифические зоны (по современ- о ным представлениям) - вторичные и третичные зоны ко- х ры больших полушарий - занимают большую часть её "8 площади и имеют существенное значение для контро- §, ля психической деятельности человека. В узком смысле §

к «неспецифической коре» относят теменно-височно-за- ^ тылочную, префронтальную и лимбическую ассоциатив­ные зоны, регулирующие такие интегративные процессы, как высшие сенсорные функции и речь, высшие двига­тельные функции, память и эмоциональное (аффективное) поведение.

Кора больших полушарий головного мозга , слой серого вещества толщиной 1-5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468-1670 см2.

Строение коры . Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80-90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры - афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры - древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2-3 слоями; новая кора состоит, как правило, из 6-7 слоев клеток; межуточные формации - переходные структуры между полями старой и новой коры, а также древней и новой коры - из 4-5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры - вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные - горизонтальные - пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений - нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры - комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая - на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Второй комплекс клеток новой коры - слой - ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V - выход из коры в подкорку, а среднеклеточный слой III - ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой - кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора - совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных - третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры - её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры . Кора - продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

Корковая пластинка появляется в процессе внутриутробного развития человека сравнительно рано - на 2-м месяце. Раньше всего выделяются нижние слои коры (VI-VII), затем - более высоко расположенные (V, IV, III и II;)К 6 месяцам у эмбриона уже имеются все цитоархитектонические поля коры, свойственные взрослому человеку. После рождения в росте коры можно выделить три переломных этапа: на 2-3-м месяце жизни, в 2,5-3 года и в 7 лет. К последнему сроку цитоархитектоника коры полностью сформирована, хотя тела нейронов продолжают увеличиваться до 18 лет. Корковые зоны анализаторов завершают своё развитие раньше, и степень их увеличения меньше, чем у вторичных и третичных зон. Отмечается большое разнообразие в сроках созревания корковых структур у разных индивидуумов, что совпадает с разнообразием сроков созревания функциональных особенностей коры. Т. о., индивидуальное (онтогенез) и историческое (филогенез) развитие коры характеризуется сходными закономерностями.

На тему : строение коры головного мозга

Подготовила



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то