К природным веществам имеющим полимерное строение. Контрольная работа: Полимеры, их получение, свойства и применение

Полимерами называют высокомолекулярные вещества, молеку­лы которых состоят из огромного количества структурных звеньев, взаимодействующих друг с другом посредством ковалентных связей с образованием макромолекул. Макромолекулы во много тысяч раз превышают размеры обычных молекул. Так, например, если моле­кула воды состоит из трех атомов, а ее молекулярная масса равна 18 единицам, или если молекула кальцита СаСОз состоит из пяти атомов, а молекулярная масса этого минерала равна 100, то молеку­лы высокомолекулярных веществ содержат десятки и сотни тысяч атомов, а их молекулярная масса достигает значений, выражаемых

десятками и сотнями тысяч единиц. Так, у природного полимера_

целлюлозы она равна 300 000 и более, у искусственных органиче­ских полимеров, например у полиэтилена низкого давления, колеб­лется в пределах от 26 000 до 150 000, у полиизобутилена, поливини-лацетата, политетрафторэтилена и других - до 500 000-550 000 и более, превышая иногда один миллион единиц.

Полимеры разделяют на органические и неорганические. Глав­ная особенность органических полимеров, отличающая их от неорганических, заключается в наличии в макромолекулах атомов углерода. В неорганических высокомолекулярных соединениях (по­лимерах) атомов углерода не содержится. Органические и неоргани­ческие полимеры подразделяют на природные и искусственные. В данной главе рассматриваются полимеры органические и преиму­щественно искусственные; что касается органических природных полимеров, то они используются в строительстве значительно реже. Среди них заслуживает внимания древесина. Образующие ее целлю­лоза и лигнин являются типичными примерами природных полиме­ров.

В результате воздействия на целлюлозу хлорэтилом в присутст­вии едкой щелочи или другими реагентами получают этилцеллюло-зу, метилцеллюлозу и бензилцеллюлозу. Эти простые эфиры целлю­лозы не отличаются высокими техническими свойствами, но используются для изготовления лаков, клеящих веществ, антикор­розионных покрытий и оболочек. В строительстве чаще применяют сложные эфиры целлюлозы - нитроцеллюлозу и ацетилцеллюлозу. Из нитроцеллюлозы изготовляют целлулоид как простейший вид пластика, но, к сожалению, весьма горючего и поэтому в строитель­стве не используемого. Второй сложный эфир-ацетилцеллюлозу применяют при изготовлении органического стекла, но в большей мере - при изготовлении лаков по дереву и металлу, так как они образуют водонепроницаемые и достаточно прочные покрытия.

Из других природных органических веществ следует отметить белковые продукты и боннскую кровь. На их основе получают соот­ветственно галалит и альбумин. Первый служит поделочным мате­риалом, второй - для получения клея при производстве фанеры. Кроме того, исходное вещество применяют при производстве пено­образователя ГК, используемого в ячеистых бетонах. К природным полимерам относятся также хлопок, шерсть, кожа, каучук и др. Наиболее значимыми в строительстве являются природные каучуки, но дешевле их заменить синтетическими каучуками или каучукообразными полимерами.

Подавляющее большинство полимеров - искусственные. Их по­лучают с помощью синтеза простых низкомолекулярных веществ, называемых мономерами. По составу основной цепи макромолекул органические полимеры разделяются на карбоцепные, гетероцепные и элементоорганические.

Карбоцепные полимеры характеризуются тем, что их молекуляр­ные цепи целиком состоят из атомов углерода:

Гетероцепные полимеры имеют в составе цепей кроме атомов углерода еще и некоторые другие атомы элементов - кислорода,

серы, азота, фосфора, или других:

Элементоорганические полимеры могут содержать в основной цепи атомы кремния, алюминия, титана и других элементов, не вхо­дящих в состав обычных органических соединений. Так, например, соединения типа имеют в макромолекуле кремний-кислородные связи, именуемые силоксановыми.

По строению макромолекул орга­нические полимеры могут быть ли­нейными, разветвленными и сетчатыми (трехмерными). При линейном строении все молекулы вытянуты в виде цепей, в которых атомы мономе­ра, являющиеся исходным низкомоле­кулярным соединением, химически связаны между собой. Разветвленные макромолекулы характерны наличи­ем мономерных звеньев, ответвлен­ных от основной цепи полимера. Сет­чатые (пространственные) макромо­лекулы характеризуются химической «сшивкой» отдельных линейных или разветвленных цепей полимера попе­речными связями (рис. 11.1).

Рис. 11.1. Строение молекул полимеров:

а - линейная структура; б - разветвленная структура; в - структура пространственного полимера

Полимеры с макромолекулами линейного и разветвленного строения при нагревании плавятся с изменени­ем свойств, а также способны растворяться в соответствующих органических растворителях. При охлаж­дении такие полимеры вновь отверждаются (так в отношении полимеров называется процесс отвердевания). Они способны много­кратно размягчаться при нагревании и отверждаться при охлажде­нии; их называют термопластичными (термопластами). Полимеры с макромолекулами трехмерного строения имеют повышенную устой­чивость к термическим и механическим воздействиям, не растворя­ются, а лишь набухают в растворителях. Они не могут размягчаться при повторном нагревании; их именуют термореактивными (реактопластами). При высокотемпературном нагревании они подверже­ны деструкции и сгоранию.

Органические полимеры в твердом состоянии имеют обычно аморфную структуру. Однако существуют полимеры, которые в твердом состоянии характеризуются кристаллической или аморф­но-кристаллической структурами.

В зависимости от способа получения полимеры разделяют на две группы: полимеризационные (термопласты) и поликонденсацион­ные (реактопласты).

Полимеризационные полимеры получают полимеризацией ис­ходных мономеров с раскрытием кратных связей ненасыщенных уг­леводородов и соединением элементарных звеньев мономера в длин­ные цепи. Поскольку при полимеризации мономеров атомы и их группировки не отщепляются, то побочных продуктов в реакциях не образуется, а химический состав мономера и полимера остается одинаковым. В полимеризации могут участвовать два и более моно­меров, тогда ее называют сополимеризацией, а продукт - сополи­мером.

Поликонденсационные полимеры получают в процессе объеди­нения (поликонденсации) двух или нескольких низкомолекулярных веществ. При протекании реакций образуется не только основной продукт, но и побочные соединения - вода, спирт и др., так что хи­мический состав полимера всегда отличается от химического соста­ва исходных продуктов поликонденсации.

Используемые в обоих процессах производства полимеров ис­ходные сырьевые мономеры, способные при определенных условиях соединяться друг с другом, получают при переработке природных и нефтяных газов, каменного угля, аммиака, углекислоты и других ве­ществ. По мере протекания процессов полимеризации и поликон­денсации возрастает число атомов в образуемых макромолекулах и растет молекулярная масса формирующихся полимеров. Вначале образуются вещества с еще сравнительно невысокой молекулярной массой (до 5000 единиц), называемые олигомерами, по консистен­ции - смолообразные. Вещества с более высокой молекулярной массой называются полимерами, растворимость, а также эластич­ность которых снижаются, но возрастает прочность - одно из важнейших свойств полимера вследствие возрастающего эффекта дейст­вия межмолекулярных сил при росте молекулярной массы, что, кстати, отсутствует в обычных органических веществах типа битума и дегтей. Следует отметить, что на свойства полимера существенное влияние оказывает и водородный тип связи, особенно когда водо­род непосредственно связан с кислородом или азотом (ОН, МШ и др.). Водородная связь, хотя и слабее ковалентной, но значительно прочнее межмолекулярных (ван-дер-ваальсовых) сил притяжения.


Рис. 11.2. Прибор Кремер-Сарнова:

1 - внутренний стакан; 2 - наружный стакан; 3 - термометр; 4 - диск; 5 - трубочки; 6 - ртуть; 7 - полимер для его испытания

Рис. 11.3. Схема прибора Вика для определения теплостойкости полимеров: 1 - образец; 2 - наконечник; 3 - стержень; 4 - термошкаф; 5 - груз


Технической характеристикой многих полимеров служат следу­ющие свойства: термические - температура размягчения и тепло­стойкость, температуры стеклования и текучести; механические - прочность, деформативность и поверхностная твердость; химиче­ские - атмосферостойкость и сопротивляемость деструкции. Каж­дое из этих свойств определяется стандартными методами, излагае­мыми в соответствующих лабораторных практикумах по полимерным материалам. В частности, температуру размягчения определяют по методу Кремер-Сарнова (рис. 11.2) или по «КиШ», теплостойкость - на приборах Мартенса или Вика (рис. 11.3), тем­пературы стеклования и текучести - по методу Каргина, а механические свойства полимеров аморфного строения - с помощью диаграмм от­носительных деформаций (рис. 11.4).

Рис. 11.4. Термомеханическая кривая термопластичных поли­меров

Наряду с положительными свойст­вами полимеров - малой средней плотностью, низкой теплопроводно­стью, высокой химической и атмо­сферной стойкостью, высокой прочно­стью и др. - они с позиций качества строительных материалов обладают и рядом недостатков - низкой тепло­стойкостью, малой поверхностной твердостью, невысоким модулем упру­гости, значительной ползучестью, склонностью к старению, а также высокой стоимостью. Она может быть несколько снижена за счет применения в полимерах наполни­телей и добавок.

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение

высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт природных ресурсов

Направление подготовки (специальность) Химическая технология

Кафедра химической технологии топлива и химической кибернетики

Реферат

Название реферата:

Природные полимеры, полимеры вокруг нас “

по дисциплине «Введение в инженерную деятельность»

Выполнили студенты гр. 2Д42 Никонова Ньургуйаана

Прокопчук Кристина

Даянова Регина

Реферат принят:

Мойзес О. Е.

(Подпись)

2014г.

(дата проверки отчета)

Томск 2014 г.

1.Введение ……………………………………………………………………………………………..2

2.Понятие полимера и классификация ………………………………………………….3

3.Целлюлоза ……………………………………………………………………………………………3

4.Крахмал…………………………………………………………………………………………………5

5.Глютин…………………………………………………………………………………………………..6

6.Казеин……………………………………………………………………………………………………6

7.Каучук…………………………………………………………………………………………………….7

8.Резина……………………………………………………………………………………………………7

9.Синтетические полимеры…………………………………………………………………...9

10.Свойства и важнейшие характеристики ……………………………………………10

11. Химические реакции………………………………………………………………………….11

12.Получение……………………………………………………………………………………………12

13.Полимеры в сельком хозяйстве…………………………………………………………..12

14.Полимеры в промышленности…………………………………………………………….14

Введение

Термин “полимерия” был введен в науку И.Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.

Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами”). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол),

Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г.Бушарда, У.Тилден, немецкий учёный К Гарриес, И.Л.Кондаков, С.В.Лебедев и другие). В 30-х годов было доказано существование свободнорадикального и ионного механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У.Карозерса.

С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Понятие полимера и классификация

Полимеры - химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация.

По происхождению полимеры делятся на:

    природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные

    синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы.

К природным полимерам, применяемым в полиграфии, относятся: полисахариды (целлюлоза крахмал, камеди), 6елки, глютин, казеин, альбумин), полидиены (каучук).

Целлюлоза

Целлюлоза, или клетчатка (от латинского слова «целлула» - клетка), широко распространена в природе. Целлюлоза - это прочное волокнистое вещество органического происхождения, из которого состоит опорная ткань всех растений (растительных клеток).

Физические свойства целлюлозы

Целлюлозные волокна отличаются белизной, гибкостью, прочностью, упруго-эластичностью, т.е. способностью обратимо деформироваться без разрушения даже при больших механических напряжениях, нерастворимостью в воде и органических растворителях, неплавкостью.

Целлюлоза выдерживает нагрев до 150° без разрушения; при более высокой температуре наблюдается деполимеризация целлюлозы и связанная с этим потеря прочности, а при 270° и выше начинается термическое разложение с выделением продуктов распада: уксусной кислоты, метилового спирта, кетонов, в остатке - деготь и уголь.

Строение целлюлозного волокна.

Каждое растительное волокно, например хлопковое, льняное, древесное и др. это одна клетка, оболочка которой состоит в основном из целлюлозы. Внутри волокна имеется канал - капилляр, доступный для проникновения воздуха и влаги. Технические волокна целлюлозы имеют длину в среднем 2,5-3 мм (ель, сосна, береза, тополь) и 20-25 мм (лен, хлопок, пенька) при диаметре 25 мкм.

Целлюлозного растительного волокна имеет фибриллярное строение. Фибриллы - это нитевидные, элементарные рол окна - пачки молекул целлюлозы, прочно соединенных между собой водородными связями, длиной 50-мкм и диаметром 0,1-0,4 мкм. Вероятнее всего, что целлюлоза образует упорядоченную систему нитей - фибрилл, расположенных более плотно вокруг внутреннего канала (капилляра) волокна и более свободно в наружных его слоях. В промежутках между фибриллами находятся мицеллюлозы и лигнин, причем содержание их увеличивается от внутренних слоев клеточной стоики к наружным. Межклеточные пространства целлю­лозы заполнены преимущественно лигнином.

Главный источник получения целлюлозы - древесина... Древесиной называется внутренняя часть деревьев, лежащая под корой и составляющая основную растительную ткань, из которой образуется ствол дерева.

Живая клетка растущего дерева имеет оболочку (стенки) из целлюлозы, внутреннюю полость, заполненную протоплазмой, и ядро. Живая клетка способна долиться и образовывать из года в год в растущем дереве новые образования древесины в слое камбия, под корой.

Живые клетки с течением времени подвергаются одеревенению, приводящему в конечном счете к их полному омертвлению, или одревеснению. Одревеснение клетки происходит главным образом в результате появления в ней лигнина. Древесина на 90-95% состоит, из таких отмерших клеток - волокон, лишенных протоплазмы и ядра, но способных к делению, с внутренней полостью, заполненной воздухом и водой.

Химические строение и свойства целлюлозы. Целлюлоза - это природный полимер полисахарид, принадлежащий к классу углеводов. Гигантская молекула (макромолекула) целлюлозы построена из многократно повторяющихся структурных звеньев - остатков β-глюкозы (О6Н10О5)п. Число п, или коэффициент полимеризации, показывает, сколько раз структурное звено-остаток β -глюкозы - повторяется в макромолекуле целлюлозы, а следовательно, характеризует длину молекулярной цепи (длину молекулы) и предопределяет ее молекулярный вес.

Коэффициент полимеризаций у целлюлозы различного происхождения различен. Так, у древесной целлюлозы он равен 3000, у хлопковой - 12 000, у льняной 36 000 (приблизительно). Этим и объясняется большой прочность хлопкового и льняного волокон по сравнении с волокнами древесной целлюлозы.

Щелочная целлюлоза получается действием на целлюлозу раствора едкого натра. При этом атомы водорода спиртовых гидроксилов частично или полностью заменяются атомами натрия. Щелочная целлюлоза, не теряя своего волокнистого строения, отличается повышенной химической активностью, что и используется при получении простых эфиров целлюлозы, например карбоксиметилцеллюлозы.

Карбоксиметилцеллюлоза (КМЦ) - это простой эфир целлюлозы и гликолевой кислоты. Промышленный способ изготовления карбоксиметилцеллюлозы основан на взаимодействии щелочной целлюлозы с монохлоруксусной кислотой.

Гемицеллюлозы - это нечто среднее между целлюлозой и крахмалом. Они также являются полисахаридами. Молекулы гемицеллюлоз построены из остатков моносахаридов: маннозы (гексозы) и ксилозы (пентозы). Гемицеллюлозы не имеют волокнистого строения. Они служат резервным питательным веществом для растений и предохраняют их от инфекций. Гемицеллюлозы набухают в воде и сравнительно легко гидролизуются даже очень разбавленными кислотами, растворяются в 18,5%-ной щелочи. Гемицеллюлозы не являются вредными примесями цел­люлозы, идущей для изготовления бумаги. Наоборот, древесная целлюлоза с большим содержанием гемицеллюлоз легко поддается размолу, а приготовленная из неё бумага имеет повышенную прочность (особенно поверхности), так как гемицеллюлозы являются очень хорошей естественной проклейкой.

Лигнин - вещество химически неустойчивое: под влиянием света, влаги, кислорода, воздуха и тепла лигнин разрушается, вследствие чего растительные волокна теряют прочность и темнеют. Лигнин, в отличие от целлюлозы, растворяется в разбавленных кислотах и щелочах. На этом свойстве лигнина основаны способы производства целлюлозы из древесины, соломы, тростника и других растительных тканей. Строение лигнина очень сложно и еще недостаточно изучено; известно, что лигнин - природный полимер, структурным звеном которого является остаток очень реакционно-способного ароматического спирта - β -оксикониферилового.

Крахмал

Крахмал в виде микроскопических зерен образуется в зеленых частях растении из углекислоты воздуха и влаги под влиянием света и уносится вместе с соками растения в клубни и зерна, где и отлагается как запасное питательное вещество.

Физические свойства крахмала. Крахмальные зерна разных растений имеют различную форму и величину. Крахмал не растворяется в холодной воде, спирте и эфире. В горячей воде зерна крахмала набухают, увеличиваясь в объеме в сотни раз, затем теряют форму и образуют вязкий и клейкий раствор. Температура растворения крахмала в воде называется температурою клейстеризации. Для картофельного крахмала она равна 60°, для маисового (кукурузного) 70°, пшеничного и рисового - 80°.

Крахмал очень гигроскопичен, он притягивает влагу з окружающего воздуха содержит обычно 10-20% влаги. Плотность крахмала 1,620-1,650 г/см3. С раствором йода крахмальный клейстер дает интенсивно синее окрашивание, исчезающей при кипячении и вновь появляющееся при охлаждении (качественная реакция на крахмал). Химические свойства крахмала. Крахмал, так же как и целлюлоза, является природным полимером - полиcaxapидом, принадлежащим к классу углеводов и отвечающим молекулярной формуле (С6К10О5)п. Но структурным звеном молекулярной цепи крахмала будет остаток α-глюкозы, а целлюлозы - β-глюкозы. Поэтому в крахмале каждые два остатка α-глюкозы образуют остаток дисахарида мальтоза, а в целлюлозе - каждые два остатка β-глюкозы образуют остаток дисахарида целлюлозы. Мальтоза изомер целлюлозы.

Крахмал содержит две фракции полисахаридов: амилозу и амилопектин. Амилоза имеет линейное строение молекул, закрученных в клубочки. Ее коэффициент полимеризации достигает 1000. Амилозой богат картофельный крахмал.

Глютин

Костный клей, мездровый клей и желатин состоят в основном из белкового вещества - глютин а.

Костный клей в виде твердых, хрупких плиток или клеевого студня - галерты вырабатывается из костей, рогов и копыт животных.

Мездровый клей, внешне очень похожий на костный, вырабатывается из мездры, которую счищают со шкур животных.

Желатин по химическому составу очень близок к костному и мездровому клею, но гораздо выше их по качеству, в частности по чистоте. Для получения желатина отбирают лучшие сорта свежих кожевенных отходов: мездру, обрезки телячьих шкур и кости крупного рогатого скота.

В костях мездре, рогах и копытах животных содержится белковое вещество - коллаген (от греческих слов «колла» - клей и «генос»- род, происхождение), не растворимое в воде. Коллаген, однако, под действием длительного нагревания в воде превращается в другой вид белка глютин, растворимый в горячей воде и обладающий клеящими свойствами.

Белковые вещества, или белки, состоят из остатков аминокислот, соединенных между собой амидными группами -NH - СО - в длинные полипептидные молекулярные цепи. Концевыми группами этих цепей (молекул) будут, с одной стороны, амино-, а с другой - карбоксильная группы.

Казеин

Казеин - это белковое вещество, содержащееся в молоке. Коровье молоко содержит 3,2%, козье - 3,8%, овечье - 4,5% казеина в растворенном состоянии. Если к молоку прибавить кислоты или дать молоку скиснуть, казеин свертывается и образует осадок, который можно отфильтровать от сыворотки, высушить и измельчить. Сворачивание казеина происходит также при добавлении к молоку сычужного фермента, т. е. сока, выделяемого одним из отделов желудка жвачных животных. Поэтому и зависимости от способа изготовления различают два вида казеина: кислотный и сычужный. В чистом виде казеин - белый творожистый осадок. И воде казеин не растворяется, а только набухает. Однако казеин хорошо растворяется в щелочных растворах. Для растворения на каждые 100 весовых частей казеина берут одну из следующих щелочных добавок. Для изготовления переплетного клея применяют только кислотный казеин, так как он лучше растворяется и дает более клейкие растворы, чем сычужный казеин. Последний идет главным образом на производство белковой пластической массы - галалит.

Высушенный казеин очень гигроскопичен и поглощает влагу из воздуха. Поэтому казеин надо хранить в сухом, хорошо вентилируемом помещении.

Каучук

Каучук добывается из латекса - сока некоторых тропических деревьев, главным образом гевеи бразильской, произрастающей в Южной Америке, Индии, Африке, Цейлоне.

Латекс - это колоидная система, золь из глобул каучука и воды. При добавлении к латексу кислот или при нагревании устойчивость золя нарушается, и каучук выпадает в виде осадка, который высушивают, вальцуют, нарезают листами. В таком виде каучук попадает на резиновые заводы.

Каучук эластичен и прочен, но он затвердевает на морозе, расплавляется при нагревании, а также впитывает воду и растворяется в бензине и некоторых других органических растворителях. Поэтому каучук долгое время не находил практического применения. Каучук начали применять для изготовления резины только в 40-х гг. XIX в., после того, как Чарльз Гудъир нашел, что в результате нагревания с серой каучук становится резиной. Процесс взаимодействия каучука с серой при 125-150° называется вулканизацией. (При вулканизации атомы серы присоединяются к молекулам каучука по месту двойных связей, «сшивая» молекулярные цепи каучука в непрерывную трехмерную сетчатую систему)

Резина

Резиной называется каучук, смешанный с серой, ускорителями процесса вулканизации, усилите­лями, наполнителями, мягчителями, противостарителями, красочными пигментами и подвергнутый процессу вул­канизации.

Ускорители вулканизации, например каптакс, тиурам и др., значительно сокращают время вулканизации и одновременно улучшают механические свойства резины.

Усилители, например сажа, и наполнители, например мелд увеличивают механическую прочность резины в несколько раз и одновременно позволяют сэкономить некоторое количество каучука, снизить стоимость резины.

Мягчители, например минеральные масла, облегчают переработку резиновой смеси и уменьшают твердость готовых резиновых изделий.

Противостарители, например эджерайт, препятствуют преждевременному отвердеванию резины; потере эластичности и упругости.

Красящие вещества придают резине тот или иной цвет. Функции красящих веществ выполняют сажа, красная окись железа (редоксайд), двуокись титана, окись цинка и др. Примерные составы резиновых смесей даются в главе пятой «Эластомеры».

Все составные части резиновой массы смешивают на вальцах или в резиносмесителе. После этого резиновой массе придается форма листов каландрированием или «сырых» заготовок будущих резиновых изделий.

Для закрепления формы изделий, и придания им надлежащих свойств они должны быть подвергнуты процессу вулканизации при 120-150° во время прессования заготовок с давлением 15-25 кг/см или при нормальном давлении после формования деталей из заготовок.

Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

    В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора

    гомоцепные,основные цепи которых построены из одинаковых атомов.

Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода,например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

Синтетические полимеры

Полиэтилен получается полимеризацией этилена двумя способами: при высоком или при низком давлении. Этилен из-за строго симметричного строения молекулы полимеризуется с трудом. Полиэтилен полупрозрачный бесцветный очень прочный термопластичный полимер с хорошими диэлектрическими и антикоррозионными свойствами. Высокая прочность полиэтилена объясняется его кристаллическим строением. Полиэтилен применяется для изготовления пленочных материалов, облицовки электропроводов, изготовления труб, сосудов бытового и промышленного назначения. Полиэтиленовые пленки пропускают ультрафиолетовые лучи, что очень ценно в случае применения их как защитных покрытий в сельском хозяйстве взамен стекла. Низкомолекулярный полиэтилен - воскообразный продукт - применяется как добавка к печатным краскам.

Печатание на полиэтилене весьма затруднительно, так как он имеет чрезвычайно ровную сомкнутую поверхность, не проницаемую для красок и растворителей, и плохие адгезионные свойства по отношению к печатным краскам. Поэтому поверхность полиэтилена, перед печатью активируют различными способами: ионизируют электрическим силовым полем, окисляют перманганатом и другими сильными окислителями, подвергают кратковременному действию пламени. После этого полиэтилен запечатывают любым способом. Предпочтение, однако, отдают способу глубокой печати, этмографии или эластографии.

Полихлорвинил (- СН2 - СНС1-) - термопластичный твердый роговидный полимер. Начинает размягчаться при 92-94° и плавится при 170°. Становится упруго-эластичным и гибким при добавлении пластификаторов например 30-35% дибутилфталата. Полихлорвинил с введенными в него пластификаторами и пигментами называется винипластом. Он выпускается в виде пластин и пленок, применяется для изготовления плоских, и ротационных (цилиндрических) стереотипов, дубликатов клише, книжных переплетов и текстовинитовых декельных покрышек.

Текстовинит полиграфический представляет собой хлопчатобумажную ткань с нанесенным на нее упруго-эластичным слоем из полихлорвинила, пигментов, наполнителей и пластификатора - дибутилфталата. Применяется в качестве декелей (упруго-эластичных прокладок) печатных машин. Вырабатывается толщиной 0,65 мм (при допуске ±0,05 мм).

Покрытие должно быть гладким, ровным, эластичным, не липким и немарким, устойчивым к действию воды, керосина, бензина, машинного масла и не должно иметь неприятного запаха.

Поливинилиденхлорид - это поли­мер винилиденхлорида применяется редко из-за плохой растворимости и нестабильности. Однако большое практическое значение имеет сополимер винилиденхлорида и хлорвинила.

I Сополимер хлорвинила и винилиденхлорида выпускается под маркой латекс СВХ. Применяется для пропитке бумаги и изготовления переплетных материалов - заменителей ледерина и коленкора.

Полистирол - твердый прозрачный бесцветный термопластический полимер, размягчающийся при 80° и плавящийся при 170°. В виде сополимера с акрилонитрилом применяется для отливки типографских шрифтов. Сополимер выпускается под маркой СНАК-15, содержит 85% стирола и 15% акрилонитрила, отличается высокой прочностью и устойчивостью к действию органических растворителей и смывающих веществ

Свойства и важнейшие характеристики.

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большиеразличия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.

Химические реакции

Полимеры могут вступать в следующие основные типы реакций :

    образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи;

    распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения);

    внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Природные полимеры

К природным полимерам, применяемым в полиграфии, относятся: полисахариды (целлюлоза, крахмал, камеди), белки (глютин, казеин), полидиены (каучук и резина).

Целлюлоза (клетчатка) - природный полимер полисахарид, принадлежащий к классу углеводов, - прочное волокнистое вещество белого цвета, из которого состоит опорная ткань всех растительных клеток. Гигантская молекула (макромолекула) целлюлозы (С6Н10О5)n построена из многократно повторяющихся структурных звеньев -- остатков в-глюкозы (остатком глюкозы называется то, что остается от ее молекулы после отсоединения одной молекулы воды).

Коэффициент полимеризации у целлюлозы различного происхождения различен: у древесной целлюлозы он равен 3000, у хлопковой -- 12 000, у льняной -- 36 000 (приблизительно). Длиной молекулярной цепи и объясняется большая прочность хлопкового и особенно льняного волокна по сравнению с волокнами древесной целлюлозы.

Каждое структурное звено молекулы целлюлозы -- остаток в-глюкозы -- имеет по три спиртовых гидроксила. Поэтому целлюлоза, несмотря на волокнистое строение и нерастворимость в воде, подобно спиртам способна образовывать простые и сложные эфиры, щелочную целлюлозу. Спиртовые гидроксилы в молекуле целлюлозы являются причиной возникновения химических водородных связей между молекулярными цепями, обеспечивающих образование технического целлюлозного волокна и формование на сетке бумагоделательной машины прочного листа бумаги при постепенной отдаче воды, доведении сухости бумаги до 92--96%.

Целлюлоза выдерживает нагрев до 150 °С без разрушения, при более высокой температуре наблюдается деполимеризация целлюлозы и связанная с этим потеря прочности, а при 270 °С и выше начинается термическое разложение с выделением продуктов распада: уксусной кислоты, метилового спирта, кетонов, в остатке -- деготь и уголь.

Каждое растительное волокно, например хлопковое, льняное, древесное, - одна клетка, оболочка которой состоит в основном из целлюлозы. Внутри волокна (клетки) имеется канал-капилляр, доступный для проникновения влаги и воздуха. Длина технического волокна целлюлозы в среднем 2,5--3 мм (ель, сосна, береза, тополь) и 20--25 мм (лен, хлопок, пенька) при диаметре около 25 мкм. Структура оболочки целлюлозной клетки очень сложна, имеет фибриллярное строение.

Фибриллы - это нитевидные элементарные волокна - пачки молекул целлюлозы, прочно соединенные между собой водородными связями длиной около 300 мкм и диаметром около 30 нм. В промежутках между фибриллами находятся гемицеллюлозы и лигнин, причем содержание их увеличивается от внутренних слоев клеточной стенки к наружным. Межмолекулярные пространства целлюлозы заполнены преимущественно лигнином. Так, абсолютно сухое хлопковое волокно - чистая 100%-ная целлюлоза; волокна льна и конопли содержат до 93 - 97% целлюлозы. В абсолютно сухой древесине различных пород деревьев содержание целлюлозы составляет примерно 50%, гемицеллюлоз - 20% и лигнина - 30%, а также некоторое количество минеральных солей, образующих золу при сжигании древесины, и до 3% (в сосне) смолистых веществ. Волокна чистой целлюлозы отличаются белизной, гибкостью, прочностью и упругоэластичностью.

Гемицеллюлозы (полисахариды) - нечто среднее между целлюлозой и крахмалом. Молекулы гемицеллюлоз построены из остатков моносахаридов: маннозы (гексозы) и ксилозы (пентозы). Гемицеллюлозы не имеют волокнистого строения. Они служат резервным питательным веществом для растений, деревьев и предохраняют их от инфекций. Гемицеллюлозы набухают в воде, сравнительно легко гидролизуются даже очень разбавленными кислотами, растворяются в 18,5%-ной щелочи. Гемицеллюлозы не являются вредными примесями целлюлозы, идущей для изготовления бумаги. Наоборот, древесная целлюлоза с большим содержанием гемицеллюлоз легко поддается размолу, а приготовленная из нее бумага имеет повышенную прочность (особенно поверхности), так как гемицеллюлозы - хорошая естественная проклейка.

Лигнин - вещество химически неустойчивое, реакционно способное: под влиянием света, влаги, кислорода воздуха, тепла лигнин разрушается, вследствие чего растительные волокна, содержащие лигнин, теряют прочность и темнеют. Лигнин в отличие от целлюлозы растворяется в разбавленных кислотах и щелочах. На этом свойстве лигнина основаны способы производства целлюлозы из древесины, соломы, тростника и других растительных тканей. Лигнин - природный полимер, структурным звеном которого является остаток очень реакционноспособного ароматического спирта - в-оксикониферилового. Одревеснение (омертвение) растительных клеток связано с появлением в них лигнина.

Крахмал в виде микроскопических зерен образуется в зеленых частях растений из углекислого газа воздуха и влаги под влиянием света и уносится вместе с соками растения в клубни и зерна, где и отлагается как запасное питательное вещество.

Физические свойства крахмала. Крахмальные зерна разных растений имеют различную форму и размер. Крахмал не растворяется в холодной воде, спирте и эфире. В горячей воде зерна крахмала набухают, увеличиваются в объеме в сотни раз, теряют форму и образуют вязкий и клейкий раствор. Температура растворения крахмала в воде называется температурой его клейстеризации. Для картофельного крахмала она будет равна 60°, для маисового (кукурузного) - 70°, пшеничного и рисового - 80 °С.

Химические свойства крахмала. Крахмал, так же как и целлюлоза, является природным полимером - полисахаридом, принадлежащим к классу углеводов и отвечающим молекулярной формуле (С6Н10О5)n. Но структурным звеном молекулярной цепи крахмала будет остаток б-глюкозы, а целлюлозы - в-глюкозы. Поэтому в крахмале каждые два остатка б-глюкозы образуют остаток дисахарида мальтозы, а в целлюлозе - каждые два остатка в-глюкозы образуют остаток дисахарида целлобиоза. Мальтоза - геометрический изомер целлобиозы.

Крахмал содержит две фракции полисахаридов: амилозу и амилопектин. Амилозой богат картофельный крахмал, а амилопектином - кукурузный (маисовый). Амилоза растворяется в воде хорошо, амилопектин - плохо. Этим и объясняется плохое растворение и более высокая температура клейстеризации маисового крахмала.

Картофельный крахмал используется в полиграфии в качестве переплетного клея (клейстера), в бумажной промышленности - для проклейки бумаги, в производстве переплетных тканей - в качестве аппрета.

Натуральный каучук - полимер изопрена - (--СН2-- --СН = С(СН3)--СН2--)п добывается из латекса - сока некоторых тропических деревьев, главным образом гевеи бразильской, произрастающей в Южной Америке, Индии, Африке и Цейлоне (Шри-Ланке).

Латекс - это коллоидная система, золь из глобул молекул каучука в водной среде. Золь - дисперсная система в коллоидно-устойчивом состоянии; гель - та же система, которая потеряла устойчивость и скаогулировала, т.е. свернулась. Глобулы - это пачки молекул, закрученные в клубок; диаметр глобул около 1 нм. При добавлении к латексу кислот или нагревании устойчивость золя нарушается, и каучук выпадает в виде осадка, который высушивается, вальцуется, нарезается листами. В таком виде каучук поступает на резиновые заводы.

Очень крупные молекулы каучука длиной около 8 мкм не вытянуты в нитку, а закручены в клубок, поэтому каучук имеет высокую эластичность. Молекулы каучука распрямляются под действием соответствующего усилия, а затем, после прекращения действия этого усилия, опять собираются в клубок.

Каучук эластичен и прочен, но он затвердевает на морозе, расплавляется при нагревании, а также впитывает воду, растворяется в бензине и некоторых других органических растворителях. Поэтому каучук в Европе долгое время не находил практического применения. И только в 40-х гг. XIX в. из каучука стали делать резину. В результате нагревания с серой каучук твердеет, превращаясь в прочный упругоэластичный материал - резину, потерявший способность растворяться в органических растворителях, тепло- и морозостойкий. Процесс взаимодействия каучука с серой при 120 - 150 °С называется процессом вулканизации. При вулканизации атомы серы присоединяются к молекулам каучука по месту двойных связей, «сшивая» молекулярные цепи в непрерывную трехмерную систему.

Резиной называется каучук, смешанный с серой, ускорителями процесса вулканизации, усилителями, наполнителями, мягчителями, противостарителями, красочными пигментами и подвергнутый процессу вулканизации.

Ускорители вулканизации, например каптакс, тиурам и др., значительно сокращают время вулканизации и одновременно улучшают механические свойства резины.

Усилители, например сажа, и наполнители, например мел, увеличивают механическую прочность резины в несколько раз и одновременно позволяют сэкономить некоторое количество каучука, снизить стоимость резины.

Мягчители, например минеральные масла, облегчают переработку резиновой смеси и уменьшают твердость готовых резиновых изделий.

Противостарители - некоторые первичные амины и их замещенные, например эджэрайт, неозон Д, препятствуют преждевременному отвердеванию резины, потере ею эластичности и упругости.

Красящие вещества придают резине тот или иной цвет. Функции красящих веществ выполняют сажа, красный оксид железа (редоксайд), диоксид титана, оксид цинка и др.

Все составные части резиновой массы смешивают на вальцах или в резиносмесителе. После этого резиновой массе придают форму листов каландрированием или получают «сырые» заготовки соответствующей формы. Заготовки подвергают вулканизации при 120 - 150 °С во время прессования под давлением 1,5 - 2,0 МПа или при нормальном давлении после формования из них деталей.

полисахарид химический крахмал

Размещено на Allbest.ru

Подобные документы

    Сравнение свойств полисахаридов на примере молекул крахмала и целлюлозы. Особенности строения крахмала и целлюлозы. Домашние мини-исследования: определение крахмала в продуктах питания и оценка растворимости целлюлозы в органических растворителях.

    презентация , добавлен 12.01.2012

    Натуральный каучук. История открытия натурального каучука. Природные каучуконосы. Сбор латекса и производство натурального каучука. Физические и химические свойства натурального каучука. Состав и строение натурального каучука. Синтетический каучук. Резина

    доклад , добавлен 06.02.2006

    Вещества, молекулы которых состоят из числа повторяющихся группировок, соединенных между собой химическими связями. Молекулярная масса макромолекул. Основные типы биополимеров. Классификация полимеров. Полимеры, получаемы реакцией поликонденсации.

    презентация , добавлен 22.04.2012

    Общее понятие о полимерах. Процесс получения высокомолекулярных соединений. Биосовместимые материалы и устройства. Органические, элементоорганические, неорганические полимеры. Природные органические полимеры. Применение биоклеев в неинвазивной терапии.

    реферат , добавлен 23.04.2013

    Природные и искусственные полимеры, их свойства и область применения. Радикальная, ионная полимеризация, поликонденсация. Строение макромолекул и их физические свойства. Механическая плотность, гибкость и эластичность. Исходный продукт переработки нефти.

    презентация , добавлен 17.01.2011

    Общее понятие про полимеры. Основные виды пластмассы: термопласты; реактопласты. Основные представители термопластов. Применение полистирола и полипропилена. Использование эпоксидных полимеров в промышленности. Натуральные, природные и химические волокна.

    презентация , добавлен 28.02.2011

    Характеристика биодеградируемых (биоразлагаемых) полимеров - материалов, которые разрушаются в результате естественных природных (микробиологических и биохимических) процессов. Свойства, способы получения и сферы использования биодеградируемых полимеров.

    реферат , добавлен 12.05.2011

    Способы синтеза и структура изопренового каучука до и после вулканизации. Метод инфракрасной спектроскопии для определения молекулярной структуры полимеров. Деформационно-прочностные свойства полимеров, находящихся в высокоэластическом состоянии.

    дипломная работа , добавлен 04.09.2013

    Изучение понятия и строения полимеров, их классификации по происхождению, форме молекул, по природе. Характеристика основных способов получения - поликонденсации и полимеризации. Пластмассы и волокна. Применение полимеров в медицине и строительстве.

    презентация , добавлен 12.10.2015

    Кремнийорганические полимеры: линейные; разветвленные; циклолинейные (лестничные); сшитые (в т.ч. циклосетчатые). Силиконовые масла и каучуки. Методы получения полиорганосилоксаны. Основные физические и химические свойства кремнийорганических полимеров.

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Общие сведения


Полимеры либо встречаются в природе, например целлюлоза, крахмал, каучук, белки, либо изготовляются синтетически, например полихлорвинил, полистирол, полиамиды и многие другие.

Полимеры - это такие высокомолекулярные, главным образом органические, вещества, очень крупные молекулы которых, называемые поэтому макромолекулами построены по одному и тому же принципу из многократно повторяющихся структурных звеньев, образованных из мономеров.

Природные полимеры


К природным полимерам, применяемым в полиграфии, относятся: полисахариды (целлюлоза крахмал, камеди), 6елки, глютин, казеин, альбумин), полидиены (каучук).

Как осуществляется образование полимеров в природе, мы точно еще не знаем, но хорошо изучили строение и свойства природных полимеров, научились выделять их из природных продуктов в очень чистом виде и даже синтезировать некоторые из них в промышленных масштабах.

Целлюлоза


Целлюлоза, или клетчатка (от латинского слова «целлула» - клетка), широко распространена в природе. Целлюлоза - это прочное волокнистое вещество органического происхождения, из которого состоит опорная ткань всех растений (растительных клеток).

Физические свойства целлюлозы


Целлюлозные волокна отличаются белизной, гибкостью, прочностью, упруго-эластичностью, т.е. способностью обратимо деформироваться без разрушения даже при больших механических напряжениях, нерастворимостью в воде и органических растворителях, неплавкостью.

Целлюлоза выдерживает нагрев до 150° без разрушения; при более высокой температуре наблюдается деполимеризация целлюлозы и связанная с этим потеря прочности, а при 270° и выше начинается термическое разложение с выделением продуктов распада: уксусной кислоты, метилового спирта, кетонов, в остатке - деготь и уголь.

Строение целлюлозного волокна.


Каждое растительное волокно, например хлопковое, льняное, древесное и др. это одна клетка, оболочка которой состоит в основном из целлюлозы. Внутри волокна имеется канал - капилляр, доступный для проникновения воздуха и влаги. Технические волокна целлюлозы имеют длину в среднем 2,5-3 мм (ель, сосна, береза, тополь) и 20-25 мм (лен, хлопок, пенька) при диаметре 25 мкм.

Целлюлозного растительного волокна имеет фибриллярное строение. Фибриллы - это нитевидные, элементарные рол окна - пачки молекул целлюлозы, прочно соединенных между собой водородными связями, длиной 50-мкм и диаметром 0,1-0,4 мкм. Вероятнее всего, что целлюлоза образует упорядоченную систему нитей - фибрилл, расположенных более плотно вокруг внутреннего канала (капилляра) волокна и более свободно в наружных его слоях. В промежутках между фибриллами находятся мицеллюлозы и лигнин, причем содержание их увеличивается от внутренних слоев клеточной стоики к наружным. Межклеточные пространства целлю­лозы заполнены преимущественно лигнином.

Главный источник получения целлюлозы - древесина... Древесиной называется внутренняя часть деревьев, лежащая под корой и составляющая основную растительную ткань, из которой образуется ствол дерева.

Живая клетка растущего дерева имеет оболочку (стенки) из целлюлозы, внутреннюю полость, заполненную протоплазмой, и ядро. Живая клетка способна долиться и образовывать из года в год в растущем дереве новые образования древесины в слое камбия, под корой.

Живые клетки с течением времени подвергаются одеревенению, приводящему в конечном счете к их полному омертвлению, или одревеснению. Одревеснение клетки происходит главным образом в результате появления в ней лигнина. Древесина на 90-95% состоит, из таких отмерших клеток - волокон, лишенных протоплазмы и ядра, но способных к делению, с внутренней полостью, заполненной воздухом и водой.

Химические строение и свойства целлюлозы. Целлюлоза - это природный полимер полисахарид, принадлежащий к классу углеводов. Гигантская молекула (макромолекула) целлюлозы построена из многократно повторяющихся структурных звеньев - остатков β-глюкозы (О6Н10О5)п. Число п, или коэффициент полимеризации, показывает, сколько раз структурное звено-остаток β -глюкозы - повторяется в макромолекуле целлюлозы, а следовательно, характеризует длину молекулярной цепи (длину молекулы) и предопределяет ее молекулярный вес.

Коэффициент полимеризаций у целлюлозы различного происхождения различен. Так, у древесной целлюлозы он равен 3000, у хлопковой - 12 000, у льняной 36 000 (приблизительно). Этим и объясняется большой прочность хлопкового и льняного волокон по сравнении с волокнами древесной целлюлозы.

Щелочная целлюлоза получается действием на целлюлозу раствора едкого натра. При этом атомы водорода спиртовых гидроксилов частично или полностью заменяются атомами натрия. Щелочная целлюлоза, не теряя своего волокнистого строения, отличается повышенной химической активностью, что и используется при получении простых эфиров целлюлозы, например карбоксиметилцеллюлозы.

Карбоксиметилцеллюлоза (КМЦ) - это простой эфир целлюлозы и гликолевой кислоты. Промышленный способ изготовления карбоксиметилцеллюлозы основан на взаимодействии щелочной целлюлозы с монохлоруксусной кислотой.

Гемицеллюлозы - это нечто среднее между целлюлозой и крахмалом. Они также являются полисахаридами. Молекулы гемицеллюлоз построены из остатков моносахаридов: маннозы (гексозы) и ксилозы (пентозы). Гемицеллюлозы не имеют волокнистого строения. Они служат резервным питательным веществом для растений и предохраняют их от инфекций. Гемицеллюлозы набухают в воде и сравнительно легко гидролизуются даже очень разбавленными кислотами, растворяются в 18,5%-ной щелочи. Гемицеллюлозы не являются вредными примесями цел­люлозы, идущей для изготовления бумаги. Наоборот, древесная целлюлоза с большим содержанием гемицеллюлоз легко поддается размолу, а приготовленная из неё бумага имеет повышенную прочность (особенно поверхности), так как гемицеллюлозы являются очень хорошей естественной проклейкой.

Лигнин - вещество химически неустойчивое: под влиянием света, влаги, кислорода, воздуха и тепла лигнин разрушается, вследствие чего растительные волокна теряют прочность и темнеют. Лигнин, в отличие от целлюлозы, растворяется в разбавленных кислотах и щелочах. На этом свойстве лигнина основаны способы производства целлюлозы из древесины, соломы, тростника и других растительных тканей. Строение лигнина очень сложно и еще недостаточно изучено; известно, что лигнин - природный полимер, структурным звеном которого является остаток очень реакционно-способного ароматического спирта - β -оксикониферилового.

Крахмал


Крахмал в виде микроскопических зерен образуется в зеленых частях растении из углекислоты воздуха и влаги под влиянием света и уносится вместе с соками растения в клубни и зерна, где и отлагается как запасное питательное вещество.

Физические свойства крахмала. Крахмальные зерна разных растений имеют различную форму и величину. Крахмал не растворяется в холодной воде, спирте и эфире. В горячей воде зерна крахмала набухают, увеличиваясь в объеме в сотни раз, затем теряют форму и образуют вязкий и клейкий раствор. Температура растворения крахмала в воде называется температурою клейстеризации. Для картофельного крахмала она равна 60°, для маисового (кукурузного) 70°, пшеничного и рисового - 80°.

Крахмал очень гигроскопичен, он притягивает влагу з окружающего воздуха содержит обычно 10-20% влаги. Плотность крахмала 1,620-1,650 г/см3. С раствором йода крахмальный клейстер дает интенсивно синее окрашивание, исчезающей при кипячении и вновь появляющееся при охлаждении (качественная реакция на крахмал). Химические свойства крахмала. Крахмал, так же как и целлюлоза, является природным полимером - полиcaxapидом, принадлежащим к классу углеводов и отвечающим молекулярной формуле (С6К10О5)п. Но структурным звеном молекулярной цепи крахмала будет остаток α-глюкозы, а целлюлозы - β-глюкозы. Поэтому в крахмале каждые два остатка α-глюкозы образуют остаток дисахарида мальтоза, а в целлюлозе - каждые два остатка β-глюкозы образуют остаток дисахарида целлюлозы. Мальтоза изомер целлюлозы.

Крахмал содержит две фракции полисахаридов: амилозу и амилопектин. Амилоза имеет линейное строение молекул, закрученных в клубочки. Ее коэффициент полимеризации достигает 1000. Амилозой богат картофельный крахмал.

Глютин


Костный клей, мездровый клей и желатин состоят в основном из белкового вещества - глютин а.

Костный клей в виде твердых, хрупких плиток или клеевого студня - галерты вырабатывается из костей, рогов и копыт животных.

Мездровый клей, внешне очень похожий на костный, вырабатывается из мездры, которую счищают со шкур животных.

Желатин по химическому составу очень близок к костному и мездровому клею, но гораздо выше их по качеству, в частности по чистоте. Для получения желатина отбирают лучшие сорта свежих кожевенных отходов: мездру, обрезки телячьих шкур и кости крупного рогатого скота.

В костях мездре, рогах и копытах животных содержится белковое вещество - коллаген (от греческих слов «колла» - клей и «генос»- род, происхождение), не растворимое в воде. Коллаген, однако, под действием длительного нагревания в воде превращается в другой вид белка глютин, растворимый в горячей воде и обладающий клеящими свойствами.

Белковые вещества, или белки, состоят из остатков аминокислот, соединенных между собой амидными группами -NH - СО - в длинные полипептидные молекулярные цепи. Концевыми группами этих цепей (молекул) будут, с одной стороны, амино-, а с другой - карбоксильная группы.

Казеин


Казеин - это белковое вещество, содержащееся в молоке. Коровье молоко содержит 3,2%, козье - 3,8%, овечье - 4,5% казеина в растворенном состоянии. Если к молоку прибавить кислоты или дать молоку скиснуть, казеин свертывается и образует осадок, который можно отфильтровать от сыворотки, высушить и измельчить. Сворачивание казеина происходит также при добавлении к молоку сычужного фермента, т. е. сока, выделяемого одним из отделов желудка жвачных животных. Поэтому и зависимости от способа изготовления различают два вида казеина: кислотный и сычужный. В чистом виде казеин - белый творожистый осадок. И воде казеин не растворяется, а только набухает. Однако казеин хорошо растворяется в щелочных растворах. Для растворения на каждые 100 весовых частей казеина берут одну из следующих щелочных добавок. Для изготовления переплетного клея применяют только кислотный казеин, так как он лучше растворяется и дает более клейкие растворы, чем сычужный казеин. Последний идет главным образом на производство белковой пластической массы - галалит.

Высушенный казеин очень гигроскопичен и поглощает влагу из воздуха. Поэтому казеин надо хранить в сухом, хорошо вентилируемом помещении.

Каучук и резина


Каучук добывается из латекса - сока некоторых тропических деревьев, главным образом гевеи бразильской, произрастающей в Южной Америке, Индии, Африке, Цейлоне.

Латекс - это колоидная система, золь из глобул каучука и воды. При добавлении к латексу кислот или при нагревании устойчивость золя нарушается, и каучук выпадает в виде осадка, который высушивают, вальцуют, нарезают листами. В таком виде каучук попадает на резиновые заводы.

Каучук эластичен и прочен, но он затвердевает на морозе, расплавляется при нагревании, а также впитывает воду и растворяется в бензине и некоторых других органических растворителях. Поэтому каучук долгое время не находил практического применения. Каучук начали применять для изготовления резины только в 40-х гг. XIX в., после того, как Чарльз Гудъир нашел, что в результате нагревания с серой каучук становится резиной. Процесс взаимодействия каучука с серой при 125-150° называется вулканизацией. (При вулканизации атомы серы присоединяются к молекулам каучука по месту двойных связей, «сшивая» молекулярные цепи каучука в непрерывную трехмерную сетчатую систему)

Резина


Резиной называется каучук, смешанный с серой, ускорителями процесса вулканизации, усилите­лями, наполнителями, мягчителями, противостарителями, красочными пигментами и подвергнутый процессу вул­канизации.

Ускорители вулканизации, например каптакс, тиурам и др., значительно сокращают время вулканизации и одновременно улучшают механические свойства резины.

Усилители, например сажа, и наполнители, например мелд увеличивают механическую прочность резины в несколько раз и одновременно позволяют сэкономить некоторое количество каучука, снизить стоимость резины.

Мягчители, например минеральные масла, облегчают переработку резиновой смеси и уменьшают твердость готовых резиновых изделий.

Противостарители, например эджерайт, препятствуют преждевременному отвердеванию резины; потере эластичности и упругости.

Красящие вещества придают резине тот или иной цвет. Функции красящих веществ выполняют сажа, красная окись железа (редоксайд), двуокись титана, окись цинка и др. Примерные составы резиновых смесей даются в главе пятой «Эластомеры».

Все составные части резиновой массы смешивают на вальцах или в резиносмесителе. После этого резиновой массе придается форма листов каландрированием или «сырых» заготовок будущих резиновых изделий.

Для закрепления формы изделий, и придания им надлежащих свойств они должны быть подвергнуты процессу вулканизации при 120-150° во время прессования заготовок с давлением 15-25 кг/см или при нормальном давлении после формования деталей из заготовок.

Синтетические полимеры


Полиэтилен получается полимеризацией этилена двумя способами: при высоком или при низком давлении. Этилен из-за строго симметричного строения молекулы полимеризуется с трудом. Полиэтилен полупрозрачный бесцветный очень прочный термопластичный полимер с хорошими диэлектрическими и антикоррозионными свойствами. Высокая прочность полиэтилена объясняется его кристаллическим строением. Полиэтилен применяется для изготовления пленочных материалов, облицовки электропроводов, изготовления труб, сосудов бытового и промышленного назначения. Полиэтиленовые пленки пропускают ультрафиолетовые лучи, что очень ценно в случае применения их как защитных покрытий в сельском хозяйстве взамен стекла. Низкомолекулярный полиэтилен - воскообразный продукт - применяется как добавка к печатным краскам.

Печатание на полиэтилене весьма затруднительно, так как он имеет чрезвычайно ровную сомкнутую поверхность, не проницаемую для красок и растворителей, и плохие адгезионные свойства по отношению к печатным краскам. Поэтому поверхность полиэтилена, перед печатью активируют различными способами: ионизируют электрическим силовым полем, окисляют перманганатом и другими сильными окислителями, подвергают кратковременному действию пламени. После этого полиэтилен запечатывают любым способом. Предпочтение, однако, отдают способу глубокой печати, этмографии или эластографии.

Полихлорвинил (- СН2 - СНС1-) - термопластичный твердый роговидный полимер. Начинает размягчаться при 92-94° и плавится при 170°. Становится упруго-эластичным и гибким при добавлении пластификаторов например 30-35% дибутилфталата. Полихлорвинил с введенными в него пластификаторами и пигментами называется винипластом. Он выпускается в виде пластин и пленок, применяется для изготовления плоских, и ротационных (цилиндрических) стереотипов, дубликатов клише, книжных переплетов и текстовинитовых декельных покрышек.

Текстовинит полиграфический представляет собой хлопчатобумажную ткань с нанесенным на нее упруго-эластичным слоем из полихлорвинила, пигментов, наполнителей и пластификатора - дибутилфталата. Применяется в качестве декелей (упруго-эластичных прокладок) печатных машин. Вырабатывается толщиной 0,65 мм (при допуске ±0,05 мм).

Покрытие должно быть гладким, ровным, эластичным, не липким и немарким, устойчивым к действию воды, керосина, бензина, машинного масла и не должно иметь неприятного запаха.

Поливинилиденхлорид - это поли­мер винилиденхлорида применяется редко из-за плохой растворимости и нестабильности. Однако большое практическое значение имеет сополимер винилиденхлорида и хлорвинила.

I Сополимер хлорвинила и винилиденхлорида выпускается под маркой латекс СВХ. Применяется для пропитке бумаги и изготовления переплетных материалов - заменителей ледерина и коленкора.

Полистирол - твердый прозрачный бесцветный термопластический полимер, размягчающийся при 80° и плавящийся при 170°. В виде сополимера с акрилонитрилом применяется для отливки типографских шрифтов. Сополимер выпускается под маркой СНАК-15, содержит 85% стирола и 15% акрилонитрила, отличается высокой прочностью и устойчивостью к действию органических растворителей и смывающих веществ.

Пластические массы


Пластическими массами, или пластмассами, называют достаточно прочные вещества на основе синтетических полимеров, способные под действием нагревания размягчаться и становиться пластичными, т. е. пригодными для изготовления различных деталей и предметов домашнего обихода прессованием или литьем под давлением в специально для этого заготовленных полых стальных пресс-формах. Затвердевшая в результате дальнейшего нагревания или при охлаждении пластическая масса превращается в законченное изделие иногда очень сложной конфигурации, повторяющее и сохраняющее полученную форму. После прессования или литья форму разделяют на части и извлекают полученное изделие.

В простейшем случае в качестве пластической массы применяют соответствующий полимер без каких-либо добавок, конечно, при обязательном условии, что данный полимер полностью удовлетворяет всем требованиям в отношении механической прочности, упругости, литейных свойств и т. п. Во всех остальных случаях свойства пластических масс коррек-тируют в нужном направлении. Для повышения прочности вводят наполнители (древесную муку, хлопковые очесы, стеклянное волокно, асбестовый: порошок, двуокись кремния - аэросил и др.), для устранения хрупкости – пластификаторы, например дибутилфталат, трикрезилфосфат и др., для придания цвета-пигменты и красители, для облегчения заполнения деталей пресс-формы и извлечения из нее изделия - смазки и т. д. Немаловажным фактором, обусловли­вающим введение наполнителей, будет стремление снизить себестоимость пластических масс.

Пластические массы в зависимости от химического строения полимера, входящего в их состав, делятся на термопластичные и термореактивныё. Термопластичные пластические массы делают из полимеров линейного строения, не имеющих химически активных функциональных групп. Термореактивные пластические массы обязательно содержат полимеры, имеющие функциональные группы, проявляющие свою хими­ческую активность при более или менее продолжительном нагревании. Изделия из термопластичных пластических масс размягчаются при нагревании и в случае необходимости могут повторно многократно переплавляться. Термореактивные пластические массы необратимо затвердевают при прессовании или литье под действием более или менее продолжительного нагревания в результате протекания химической реакции поликонденсации. Поэтому повторная переплавка деталей (изделий) из термореактивных пластических масс невозможна.

Пластические массы имеют очень ценные свойства:

небольшой удельный вес (пластмассы в 5-8 раз легче стали);

большую механическую прочность;

хорошие диэлектрические свойства (пластические массы не проводят электрического тока);

высокую химическую стойкость и неизменяемость и атмосферных условиях;

простоту и легкость переработки в изделие методами литья под давлением или прессования;

хорошие экономические показатели (высокая рентабельность) применения пластических масс в различных областях техники.

В природе мы не находим материалов с подобным сочетанием свойств. Не удивительно поэтому, что в полиграфической промышленности пластические массы нашли широкое применение для изготовления типографских шрифтов и стереотипов, красочных валиков, книжных переплетов.

Офсетные резиновые пластины


Офсетная резиновая пластина состоит из нескольких слоев тканевых прокладок, пропитанных резиновым клеем, спрессованных с наружным резиновым слоем, который наложен с одной стороны. Наружный слой из маслостойкой нитрильной резины может быть гладким или матовым (равномерно зернистым). Он хорошо воспринимает краску с печатной формы, точно воспроизводя изображение печатной формы, и при очень небольшом натиске передает это изображение на поверхность бумаги. Тканевые прокладки повышают прочность резиновой пластины и обеспечивают тугое ее натяжение на офсетном цилиндре. Это необходимо, чтобы предотвратить искажение изображения, скольжение и т. п. Кроме того, тканевая основа уничтожает излишнюю эластичность резиновой пластины и связанную с этим чрезмерную деформацию печатающих элементов.

Хорошая офсетная резиновая пластина должна иметь следующие свойства:

1) гладкую или равномерно зернистую поверхность, без раковин, морщин, грубых зерен, посторонних включений и пр.;

2) однородную толщину;

3) достаточную упругость (модуль упругости должен быть не менее 40 кг/см2);

4) склейка наружного резинового слоя с прорезиненной прокладкой, а также склейка тканевых прокладок между собой должны быть прочными;

5) быть прочной к истиранию;

6) растяжение пластины при натяжении ее на офсетный цилиндр должно быть минимальным и равномерным в обоих направлениях;

7) иметь форму правильного прямоугольника с ровно обрезанными краями;

8) быть устойчивой к действию полиграфических красок и органических растворителей, применяемых для их смывки, например к минеральным маслам, уайт-спириту, керосину и т. п.

Офсетные резиновые пластины должны хорошо воспринимать и передавать полиграфические краски без их чрезмерного накопления на поверхности офсетных резиновых пластин. Коэффициент краскоотдачи офсетной резиновой пластины должен быть не менее 60%.

Офсетные резиновые пластины выпускаются толщиной 1,8-2,2 мм, длиной от 80 до 170 см при ширине от 75 до 140 см. Равномерность толщины одной и той же пластины должна быть в пределе ±0,3 мм.

Офсетные пластины требуют очень внимательного ухода, так как сильно разрушаются под действием жесткой бумаги и бумажной пыли, а также при неправильно выбранном растворителе для смывки.

Литература


Б.И. Березин «Материаловедение полиграфического производства»-М.: «Книга», 1972

Гельмут Киппхан «Энциклопедия» – Мос. университет печати, 2003


Общие сведения

Природные полимеры

Целлюлоза

Физические свойства целлюлозы

Строение целлюлозного волокна.

Каучук и резина

Синтетические полимеры

Пластические массы

Офсетные резиновые пластины

Литература

Похожие рефераты:

Изготовление древесной целлюлозы, тряпичной полумассы, древесной массы. Макулатура и ее переработка. Массный размол целлюлозы. Влияние размола на свойства бумаги. Мелование на бумагокрасильных машинах. Газетная офсетная бумага. Мелованная бумага.

Особенности производства сульфатной целлюлозы. Принципы модифицирования химикатов сульфатной и полисульфатной варки. Технология переработки сульфатного и сульфитного щелоков. Способы извлечения гидроксида натрия из отработанного варочного раствора.

Свойства металлов и сплавов. Двойные сплавы. Металлы применяемые в полиграфии. Технические требования к типографским сплавам. Важнейшие свойства типографских сплавов. Металлы для изготовления типографских сплавов. Диаграммы состояния компонентов.

Получение левоглюкозана при термообработке хлопковой целлюлозы в интервале температур 350-400° при пониженном давлении, аморфность его структуры. Стадии термического распада целлюлозы. Исследования по синтезу полилевоглюкозана, его эфиров и производных.

Производство синтетических каучуков. Получение каучукогенов (мономеров) их полимеризация. Зависимость свойства резины от типа каучука, применяемого для её производства. Классификация, маркировка и ассортимент резины. Факторы, формирующие качество резины.

Состав и свойства пластмасс. Композиционные материалы с неметаллической матрицей. Резиновые материалы: общая характеристика, свойства и назначение. Клеящиеся материалы и герметики. Сущность и виды каучуков. Понятие, виды и физические свойства древесины.

Многослойные и комбинированные материалы являются композиционными материалами. Деление упаковочных материалов на многослойные и комбинированные. Термин "многослойные материалы" относится к группе материалов, состоящих из слоев синтетических полимеров.

Органические искусственные вещества – полимеры, их химический состав и молекулярное строение. Понятие полимеризации, полиприсоединения и поликонденсации. Добавки в составе пластмасс. Производство пластмасс, их применение в строительстве и в спорте.

Пластические массы (пластмассы) как основной тип неметаллических материалов. Основные технологические и эксплуатационные свойства пластмасс. Термопластичные и термореактивные материалы. Классификация пластмасс в зависимости от их основного назначения.

Различие бумаги и картона, сырьевые материалы (полуфабрикаты) для их производства. Технологические этапы производства. Виды готовой продукции из бумаги и картона и области ее применения. Производственно-экономическая характеристика ООО "Гофротара".

Определение содержания золы, смол и жиров. Содержание остаточного лигнина в технической целлюлозе. Определение пентозанов фотоколориметрическим и спектрофотометрическим методами. Основные методы определения жесткости целлюлозы по перманганатному числу.

Причины износа одежды. Прочность ткани при растяжении - один из важнейших показателей, характеризующих ее качество. Увеличение срока носки изделий. Физические и оптические свойства тканей. Проявление технических свойств ткани в процессе производства.

Целлюлозно-бумажная промышленность – наиболее сложная отрасль лесного комплекса, связанная с механической обработкой и химической переработкой древесины. Она включает производство целлюлозы, бумаги, картона и изделий из них. Лесопромышленные комплексы.

Общая характеристика и классификация полимеров и полимерных материалов. Технологические особенности переработки полимеров, необходимые процессы для создания нужной структуры материала. Технологии переработки полимеров, находящихся в твердом состоянии.

Пластмассы, их классификация и физические свойства. Технология изготовления пластмасс. Тенденции на рынке полимеров. Широкое распространение полимерных изделий. Процессы утилизации пластмассы. Развитие рынка пластмасс.

Полимеры линейной или разветвленной структуры, лежащие в основе термопластичных пластмасс. Пластификаторы, добавляемые в состав полимеров. Ограниченная рабочая температура термопластов. Неполярные термопластичные пластмассы. Легирующие составляющие стали.

Особую, очень важную, группу химических природных веществ составляют высокомолекулярные соединения (полимеры) . Их можно разделить на две большие группы:

    Природные органические полимеры - биополимеры

    Природные неорганические полимеры

В начале рассмотрим вещества, относящиеся к биополимерам.

Масса молекул биополимеров достигает нескольких десятков тысяч и роль этих соединений огромна. Полимерные вещества являются основой Жизни на Земле.

Таблица 1

Органические природные полимеры – биополимеры – обеспечивают процессы жизнедеятельности всех животных и растительных организмов. Интересно, что из множества возможных вариантов Природа "выбрала" всего 4 типа полимеров:

Рисунок 1

Полисахариды

Полисахариды – это природные высокомолекулярные углеводы, макромолекулы которых состоят из остатков моносахаридов.

Полисахариды составляют основную массу органической материи в биосфере Земли. В живой природе они выполняют важные биологические функции, выступая в качестве:

    структурных компонентов клеток и тканей,

    энергетического резерва,

    защитных веществ.

Полисахариды образуются из низкомолекулярных соединений общей формулы С n Н 2 n О n называемых сахарами или углеводами. Для сахаров характерно наличие альдегидной или кетонной групп, в соответствии с этим первые называются альдозами, вторые – кетозами. Среди сахаров с n = 6, называемых гексозами, имеется 16 изомерных альдогексоз и 16 кетогексоз. Однако только четыре из них (α-галактоза, d -манноза, d -глюкоза, d -фруктоза) встречаются в живой клетке. Биологическая роль сахаров определяется тем, что они являются источником энергии, необходимой организму, которая выделяется при их окислении, и исходным материалом для синтеза макромолекул.

В последнем случае большое значение имеет способность сахаров образовывать циклические структуры, что иллюстрируется ниже на примере глюкозы и фруктозы:


Рис. 2

В водном растворе глюкоза содержит 99,976 % циклического изомера. У кетогексоз циклические изомеры пятичленные. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путем конденсации гидроксильных групп.

Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или ее производных.

Основные представители полисахаридов - крахмал и целлюлоза - построены из остатков одного моносахарида - глюкозы . Крахмал и целлюлоза имеют одинаковую молекулярную формулу:

(C6h10o5)n,

но совершенно различные свойства . Это обьясняется особенностями их пространственного строения.

Крахмал состоит из остатков α-глюкозы, а целлюлоза - из β-глюкозы, которые являются пространственными изомерами и отличаются лишь положением одной гидроксильной группы (выделена цветом):

Рисунок 3

С учетом пространственного строения шестичленного цикла формулы этих изомеров имеют вид:

Рисунок 4

К важнейшим полисахаридам относится также гликоген (C 6 H 10 O 5) n , образующийся в организмах человека и животных в результате биохимических превращений из растительных углеводов. Как и крахмал, гликоген состоит из остатков α-глюкозы и выполняет подобные функции (поэтому часто называется животным крахмалом).

Из химических свойств полисахаридов наибольшее значение имеют реакции гидролиза и образование производных за счёт реакций макромолекул по ОН-группам.

    Гидролиз полисахаридов происходит в разбавленных растворах минеральных кислот (или под действием ферментов). При этом в макромолекулах разрываются связи, соединяющие моносахаридные звенья - гликозидные связи (аналогично гидролизу дисахаридов ). Полный гидролиз полисахаридов приводит к образованию моносахаридов (целюллоза, крахмал и гликоген гидролизуются до глюкозы):

(C 6 H 10 O 5) n + n H 2 O (H +) n C 6 H 12 O 6

При неполном гидролизе образуются олигосахариды, в том числе и дисахариды. Способность полисахаридов к гидролизу увеличивается в ряду:

целлюлоза < крахмал < гликоген

Из целлюлозы (отходов деревообрабатывающей промышленности) в результате кислотного гидролиза и последующего сбраживания образующейся глюкозы получают этанол (называемый "гидролизным спиртом").

    Среди производных полисахаридов наибольшее практическое значение имеют простые и сложные эфиры целлюлозы. Их образование происходит в реакциях макромолекул целлюлозы по спиртовым ОН-группам (в каждом моносахаридном звене 3 группы ОН):

К важнейшим производным целлюлозы относятся: - метилцеллюлоза (простые метиловые эфиры целлюлозы) общей формулы

N (х = 1, 2 или 3);

- ацетилцеллюлоза (триацетат целлюлозы) - сложный эфир целлюлозы и уксусной кислоты

- нитроцеллюлоза (нитраты целлюлозы) - сложные азотнокислые эфиры целлюлозы:

N (х = 1, 2 или 3).

Эти полимерные материалы используются в производстве искусственных волокон, пластмасс, пленок, лакокрасочных материалов, бездымного пороха, взрывчатки, твердых ракетных топлив и др.



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то