Какие химические соединения участвовали в химической революции. Краткий очерк истории химии. Алхимия в арабском мире

Больших успехов в выделении газов и изучении их свойств достиг Джозеф Пристли - протестантский священник, увлеченно занимавшийся химией. Близ Лидса (Англия), где он служил, находился пивоваренный завод, откуда можно было получать в больших количествах «связанный воздух» (теперь мы знаем, что это был диоксид углерода) для проведения опытов. Пристли обнаружил, что газы могут растворяться в воде, и попытался собирать их не над водой, а над ртутью. Так он сумел собрать и изучить оксид азота, аммиак, хлороводород, диоксид серы (конечно, это их современные названия). В 1774 Пристли сделал самое важное свое открытие: он выделил газ, в котором вещества горели особенно ярко. Будучи сторонником теории флогистона, он назвал этот газ «дефлогистированным воздухом». Газ, открытый Пристли, казался антиподом «флогистированного воздуха» (азота), выделенного в 1772 английским химиком Даниэлом Резерфордом (1749-1819). В «флогистированном воздухе» мыши умирали, а в «дефлогистированном» были весьма активным. (Следует отметить, что свойства газа, выделенного Пристли, еще в 1771 описал шведский химик Карл Вильгельм Шееле, но его сообщение по небрежности издателя появилось в печати лишь в 1777.) Великий французский химик Антуан Лоран Лавуазье сразу же оценил значение открытия Пристли. В 1775 он подготовил статью, где утверждал, что воздух не простое вещество, а смесь двух газов, один из них - «дефлогистированный воздух» Пристли, который соединяется с горящими или ржавеющими предметами, переходит из руд в древесный уголь и является необходимым для жизни. Лавуазье назвал его oxygen, кислород, т.е. «порождающий кислоты». Второй удар по теории элементов-стихий был нанесен после того, как выяснилось, что вода - это тоже не простое вещество, а продукт соединения двух газов: кислорода и водорода. Все эти открытия и теории, покончив с таинственными «стихиями», повлекли за собой рационализацию химии. На первый план вышли только те вещества, которые можно взвесить или количество которых можно измерить каким-то иным способом. В течение 80-х годов 18 в. Лавуазье в сотрудничестве с другими французскими химиками - Антуаном Франсуа де Фуркруа (1755-1809), Гитоном де Морво (1737-1816) и Клодом Луи Бертолле - разработал логическую систему химической номенклатуры; в ней было описано более 30 простых веществ с указанием их свойств. Этот труд, Метод химической номенклатуры, был опубликован в 1787.

Переворот в теоретических взглядах химиков, который произошел в конце 18 в. в результате быстрого накопления экспериментального материала в условиях господства теории флогистона (хотя и независимо от нее), обычно называют «химической революцией».

Информация о химии

Вильштеттер (Willstatter), Рихард

Немецкий химик Рихард Мартин Вильштеттер родился в Карлсруэ, в семье торговца тканями Макса Вильштеттера и Софьи (Ульман) Вильштеттер. Он окончил школу в Карлсруэ и реальную гимназию в Нюрнберге, где показал себя настолько способн...

Тиселиус (Tiselius), Арне Вильгельм Каурин

Шведский биохимик Арне Вильгельм Каурин Тиселиус (Тизелиус) родился в Стокгольме, в семье Ханса Абрахама Йисона Тиселиуса, служащего страховой компании, и дочери норвежского священника Розы (Каурин) Тиселиус. Когда в 1906 г. отец...

Pt - Платина

ПЛАТИНА (лат. Platinum), Pt, химический элемент VIII группы периодической системы, атомный номер 78, атомная масса 195,08, относится к платиновым металлам. Свойства: плотность 21,45 г/см3, tпл 1769 °С. Название: от испанског...

Химия древности.

Химия, наука о составе веществ и их превращениях, начинается с открытия человеком способности огня изменять природные материалы. По-видимому, люди умели выплавлять медь и бронзу, обжигать глиняные изделия, получать стекло еще за 4000 лет до н.э. К 7 в. до н.э. Египет и Месопотамия стали центрами производства красителей; там же получали в чистом виде золото, серебро и другие металлы. Примерно с 1500 до 350 до н.э. для производства красителей использовали перегонку, а металлы выплавляли из руд, смешивая их с древесным углем и продувая через горящую смесь воздух. Самим процедурам превращения природных материалов придавали мистический смысл.

Греческая натурфилософия.

Эти мифологические идеи проникли в Грецию через Фалеса Милетского , который возводил все многообразие явлений и вещей к единой первостихии – воде. Однако греческих философов интересовали не способы получения веществ и их практическое использование, а главным образом суть происходящих в мире процессов. Так, древнегреческий философ Анаксимен утверждал, что первооснова Вселенной – воздух: при разрежении воздух превращается в огонь, а по мере сгущения становится водой, затем землей и, наконец, камнем. Гераклит Эфесский пытался объяснить явления природы, постулируя в качестве первоэлемента огонь.

Четыре первоэлемента.

Эти представления были объединены в натурфилософии Эмпедокла из Агригента – создателя теории четырех начал мироздания. В различных вариантах его теория властвовала над умами людей более двух тысячелетий. Согласно Эмпедоклу, все материальные объекты образуются при соединении вечных и неизменных элементов-стихий – воды, воздуха, земли и огня – под действием космических сил любви (притяжения) и ненависти (отталкивания). Теорию элементов Эмпедокла приняли и развили сначала Платон , уточнивший, что нематериальные силы добра и зла могут превращать эти элементы один в другой, а затем Аристотель .

Согласно Аристотелю, элементы-стихии – это не материальные субстанции, а носители определенных качеств – тепла, холода, сухости и влажности. Этот взгляд трансформировался в идею четырех «соков» Галена и господствовал в науке вплоть до 17 в. Другим важным вопросом, занимавшим греческих натурфилософов, был вопрос о делимости материи. Родоначальниками концепции, получившей впоследствии название «атомистической», были Левкипп , его ученик Демокрит и Эпикур . Согласно их учению, существуют только пустота и атомы – неделимые материальные элементы, вечные, неразрушимые, непроницаемые, различающиеся формой, положением в пустоте и величиной; из их «вихря» образуются все тела. Атомистическая теория оставалась непопулярной в течение двух тысячелетий после Демокрита, но не исчезла полностью. Одним из ее приверженцев стал древнегреческий поэт Тит Лукреций Кар , изложивший взгляды Демокрита и Эпикура в поэме О природе вещей (De Rerum Natura ).

Алхимия.

Алхимия – искусство совершенствования вещества через превращение металлов в золото и совершенствования человека путем создания эликсира жизни. Стремясь к достижению самой привлекательной для них цели – созданию неисчислимых богатств, – алхимики разрешили многие практические задачи, открыли множество новых процессов, наблюдали разнообразные реакции, способствуя становлению новой науки – химии.

Эллинистический период.

Колыбелью алхимии был Египет. Египтяне блестяще владели прикладной химией, которая, однако, не была выделена в самостоятельную область знания, а входила в «священное тайное искусство» жрецов. Как отдельная область знания алхимия появилась на рубеже 2 и 3 в. н.э. После смерти Александра Македонского его империя распалась, но влияние греков распространялось на обширные территории Ближнего и Среднего Востока. Особенно бурного расцвета алхимия достигла в 100–300 н.э. в Александрии.

Примерно в 300 н.э. египтянин Зосима написал энциклопедию – 28 книг, охватывавших все знания по алхимии за предыдущие 5–6 вв., в частности сведения о взаимопревращениях (трансмутациях) веществ.

Алхимия в арабском мире.

Завоевав Египет в 7 в., арабы усвоили греко-восточную культуру, сохранявшуюся в течение веков александрийской школой. Подражая древним властителям, халифы начали покровительствовать наукам, и в 7–9 вв. появились первые химики.

Самым талантливым и прославленным арабским алхимиком был Джабир ибн Хайян (конец 8 в.), позднее ставший известным в Европе под именем Гебер. Джабир полагал, что сера и ртуть являются двумя противоположными началами, из которых образуются семь других металлов; труднее всего образуется золото: для этого нужно особое вещество, которое греки называли xerion – «сухой», а арабы изменили на al-iksir (так появилось слово «эликсир»). Эликсир должен был обладать и другими чудесными свойствами: излечивать от всех болезней и давать бессмертие. Другой арабский алхимик, ар-Рази (ок. 865–925) (в Европе известен под именем Разес) занимался также медициной. Так, он описал методику приготовления гипса и способа наложения повязки на место перелома. Однако самым знаменитым врачом был бухарец Ибн Сина , известный также под именем Авиценна. Его сочинения служили руководством для врачей в течение многих веков.

Алхимия в Западной Европе.

Научные воззрения арабов проникли в средневековую Европу в 12 в. через Северную Африку, Сицилию и Испанию. Работы арабских алхимиков были переведены на латынь, а затем и на другие европейские языки. Вначале алхимия в Европе опиралась на работы таких корифеев, как Джабир, но спустя три столетия вновь проявился интерес к учению Аристотеля, особенно в трудах немецкого философа и теолога-доминиканца, ставшего впоследствии епископом и профессором Парижского университета, Альберта Великого и его ученика Фомы Аквинского . Убежденный в совместимости греческой и арабской науки с христианской доктриной, Альберт Великий способствовал введению их в схоластические курсы обучения. В 1250 философия Аристотеля была введена в курс преподавания в Парижском университете. Алхимическими проблемами интересовался и английский философ и естествоиспытатель, монах-францисканец Роджер Бэкон , предвосхитивший многие позднейшие открытия; он изучал свойства селитры и многих других веществ, нашел способ изготовления черного пороха. Среди других европейских алхимиков следует упомянуть Арнальдо да Вилланова (1235–1313), Раймонда Луллия (1235–1313), Василия Валентина (немецкого монаха 15–16 вв.).

Достижения алхимии.

Развитие ремесел и торговли, возвышение городов в Западной Европе 12–13 вв. сопровождались развитием науки и появлением промышленности. Рецепты алхимиков использовались в таких технологических процессах, как обработка металлов. В эти годы начинаются систематические поиски способов получения и идентификации новых веществ. Появляются рецепты производства спирта и усовершенствования процесса его перегонки. Важнейшим достижением было открытие сильных кислот – серной, азотной. Теперь европейские химики смогли осуществить многие новые реакции и получить такие вещества, как соли азотной кислоты, купорос, квасцы, соли серной и соляной кислот. Услугами алхимиков, которые нередко были искусными врачами, пользовалась высшая знать. Считалось также, что алхимики владеют тайной трансмутации обычных металлов в золото.

К концу 14 в. интерес алхимиков к превращению одних веществ в другие уступил место интересу к производству меди, латуни, уксуса, оливкового масла и различных лекарств. В 15–16 вв. опыт алхимиков все чаще использовался в горном деле и медицине.

ЗАРОЖДЕНИЕ СОВРЕМЕННОЙ ХИМИИ

Конец средних веков отмечен постепенным отходом от оккультизма, спадом интереса к алхимии и распространением механистического взгляда на устройство природы.

Ятрохимия.

Совершенно иных взглядов на цели алхимии придерживался Парацельс (1493–1541). Под таким выбранным им самим именем («превосходящий Цельса») вошел в историю швейцарский врач Филипп фон Гогенгейм. Парацельс, как и Авиценна, считал, что основная задача алхимии – не поиски способов получения золота, а изготовление лекарственных средств. Он заимствовал из алхимической традиции учение о том, что существуют три основные части материи – ртуть, сера, соль, которым соответствуют свойства летучести, горючести и твердости. Эти три элемента составляют основу макрокосма (Вселенной) и связаны с микрокосмом (человеком), образованным духом, душой и телом. Переходя к определению причин болезней, Парацельс утверждал, что лихорадка и чума происходят от избытка в организме серы, при избытке ртути наступает паралич и т.д. Принцип, которого придерживались все ятрохимики, состоял в том, что медицина есть дело химии, и все зависит от способности врача выделять чистые начала из нечистых субстанций. В рамках этой схемы все функции организма сводились к химическим процессам, и задача алхимика заключалась в нахождении и приготовлении химических веществ для медицинских нужд.

Основными представителями ятрохимического направления были Ян Гельмонт (1577–1644), по профессии врач; Франциск Сильвий (1614–1672), пользовавшийся как медик большой славой и устранивший из ятрохимического учения «духовные» начала; Андреас Либавий (ок. 1550–1616), врач из Ротенбурга. Их исследования во многом способствовали формированию химии как самостоятельной науки.

Механистическая философия.

С уменьшением влияния ятрохимии натурфилософы вновь обратились к учениям древних о природе. На первый план в 17 в. вышли атомистические (корпускулярные) воззрения. Одним из виднейших ученых – авторов корпускулярной теории – был философ и математик Рене Декарт .Свои взгляды он изложил в 1637 в сочинении Рассуждение о методе . Декарт полагал, что все тела «состоят из многочисленных мелких частиц различной формы и размеров,... которые не настолько точно прилегают друг к другу, чтобы вокруг них не оставалось промежутков; эти промежутки не пустые, а наполнены... разреженной материей». Свои «маленькие частички» Декарт не считал атомами, т.е. неделимыми; он стоял на точке зрения бесконечной делимости материи и отрицал существование пустоты. Одним из виднейших противников Декарта был французский физик и философ Пьер Гассенди . Атомистика Гассенди была по существу пересказом учения Эпикура, однако, в отличие от последнего, Гассенди признавал сотворение атомов Богом; он считал, что Бог создал определенное число неделимых и непроницаемых атомов, из которых и состоят все тела; между атомами должна быть абсолютная пустота. В развитии химии 17 в. особая роль принадлежит ирландскому ученому Роберту Бойлю . Бойль не принимал утверждения древних философов, считавших, что элементы мироздания можно установить умозрительно; это и нашло отражение в названии его книги Химик-скептик . Будучи сторонником экспериментального подхода к определению химических элементов (который в конечном счете и был принят), он не знал о существовании реальных элементов, хотя один из них – фосфор – едва не открыл сам. Обычно Бойлю приписывают заслугу введения в химию термина «анализ». В своих опытах по качественному анализу он применял различные индикаторы, ввел понятие химического сродства. Основываясь на трудах Галилео Галилея Эванджелиста Торричелли , а также Отто Герике , демонстрировавшего в 1654 «магдебургские полушария», Бойль описал сконструированный им воздушный насос и опыты по определению упругости воздуха при помощи U-образной трубки. В результате этих опытов был сформулирован известный закон об обратной пропорциональности объема и давления воздуха. В 1668 Бойль стал деятельным членом только что организованного Лондонского королевского общества, а в 1680 был избран его президентом.

Техническая химия.

Научные успехи и открытия не могли не повлиять на техническую химию, элементы которой можно найти в 15–17 вв. В середине 15 в. была разработана технология воздуходувных горнов. Нужды военной промышленности стимулировали работы по усовершенствованию технологии производства пороха. В течение 16 в. удвоилось производство золота и в девять раз возросло производство серебра. Выходят фундаментальные труды по производству металлов и различных материалов, используемых в строительстве, при изготовлении стекла, крашении тканей, для сохранения пищевых продуктов, выделки кож. С расширением потребления спиртных напитков совершенствуются методы перегонки, конструируются новые перегонные аппараты. Появляются многочисленные производственные лаборатории, прежде всего металлургические. Среди химиков-технологов того времени можно упомянуть Ванноччо Бирингуччо (1480–1539), чей классический труд О пиротехнике был напечатан в Венеции в 1540 и содержал 10 книг, в которых речь шла о рудниках, испытании минералов, приготовлении металлов, перегонке, военном искусстве и фейерверках. Другой известный трактат, О горном деле и металлургии , был написан Георгом Агриколой (1494–1555). Следует упомянуть также об Иоганне Глаубере (1604–1670), голландском химике, создателе глауберовой соли.

ВОСЕМНАДЦАТЫЙ ВЕК

Химия как научная дисциплина.

С 1670 по 1800 химия получила официальный статус в учебных планах ведущих университетов наряду с натурфилософией и медициной. В 1675 появился учебник Николя Лемери (1645–1715) Курс химии , завоевавший огромную популярность, в свет вышло 13 его французских изданий, а кроме того, он был переведен на латинский и многие другие европейские языки. В 18 в. в Европе создаются научные химические общества и большое количество научных институтов; проводимые в них исследования тесно связаны с социальными и экономическими потребностями общества. Появляются химики-практики, занимающиеся изготовлением приборов и получением веществ для промышленности.

Теория флогистона.

В сочинениях химиков второй половины 17 в. большое внимание уделялось толкованиям процесса горения. По представлениям древних греков, все, что способно гореть, содержит в себе элемент огня, который высвобождается при соответствующих условиях. В 1669 немецкий химик Иоганн Иоахим Бехер попытался дать рационалистическое объяснение горючести. Он предположил, что твердые вещества состоят из трех видов «земли», и один из видов, названный им «жирной землей», принял за «принцип горючести».

Последователь Бехера немецкий химик и врач Георг Эрнст Шталь трансформировал концепцию «жирной земли» в обобщенную доктрину флогистона – «начала горючести». Согласно Шталю, флогистон – это некая субстанция, содержащаяся во всех горючих веществах и высвобождающаяся при горении. Шталь утверждал, что ржавление металлов подобно горению дерева. Металлы содержат флогистон, а ржавчина (окалина) уже не содержит флогистона. Это давало приемлемое объяснение и процессу превращения руд в металлы: руда, содержание флогистона в которой незначительно, нагревается на древесном угле, богатом флогистоном, и последний переходит в руду. Уголь же превращается в золу, а руда – в металл, богатый флогистоном. К 1780 теория флогистона была принята химиками почти повсеместно, хотя и не отвечала на очень важный вопрос: почему железо при ржавлении становится тяжелее, хотя флогистон из него улетучивается? Химикам 18 в. это противоречие не казалось столь важным; главное, по их мнению, было объяснить причины изменения внешнего вида веществ.

В 18 в. работало много химиков, чья научная деятельность не укладывается в обычные схемы рассмотрения этапов и направлений развития науки, и среди них особое место принадлежит русскому ученому-энциклопедисту, поэту, поборнику просвещения Михаилу Васильевичу Ломоносову (1711–1765). Своими открытиями Ломоносов обогатил почти все области знания, и многие его идеи более чем на сто лет опередили науку того времени. В 1756 Ломоносов провел знаменитые опыты по обжиганию металлов в закрытом сосуде, которые дали неоспоримое доказательство сохранения вещества при химических реакциях и роли воздуха в процессах горения: наблюдаемое увеличение веса при обжигании металлов еще до Лавуазье он объяснял соединением их с воздухом. В противоположность господствовавшим представлениям о теплороде он утверждал, что тепловые явления обусловлены механическим движением материальных частиц. Упругость газов он объяснял движением частиц. Ломоносов разграничивал понятия «корпускула» (молекула) и «элемент» (атом), что получило всеобщее признание лишь в середине 19 в. Ломоносов сформулировал принцип сохранения материи и движения, исключил флогистон из числа химических агентов, заложил основы физической химии, создал при Петербургской АН в 1748 химическую лабораторию, в которой проводились не только научные работы, но и практические занятия студентов. Обширные исследования проводил он в смежных с химией областях знания – физике, геологии и др.

Пневматическая химия.

Недостатки теории флогистона наиболее ясно выявились в период развития т.н. пневматической химии. Крупнейшим представителем этого направления был Р.Бойль: он не только открыл газовый закон, носящий теперь его имя, но и сконструировал аппараты для собирания воздуха. Химики получили важнейшее средство для выделения, идентификации и изучения различных «воздухов». Важным шагом было изобретение английским химиком Стивеном Хейлзом (1677–1761) «пневматической ванны» в начале 18 в. – прибора для улавливания газов, выделяющихся при нагревании вещества, в сосуд с водой, опущенный вверх дном в ванну с водой. Позже Хейлз и Генри Кавендиш установили существование неких газов («воздухов»), отличающихся по своим свойствам от обычного воздуха. В 1766 Кавендиш систематически исследовал газ, образующийся при взаимодействии кислот с некоторыми металлами, позже названный водородом. Большой вклад в изучение газов внес шотландский химик Джозеф Блэк .Он занялся исследованием газов, выделяющихся при действии кислот на щелочи. Блэк установил, что минерал карбонат кальция при нагревании разлагается с выделением газа и образует известь (оксид кальция). Выделившийся газ (углекислый газ – Блэк назвал его «связанным воздухом») можно было вновь соединить с известью и получить карбонат кальция. Среди прочего, это открытие устанавливало неразрывность связей между твердыми и газообразными веществами.

Химическая революция.

Больших успехов в выделении газов и изучении их свойств достиг Джозеф Пристли – протестантский священник, увлеченно занимавшийся химией. Близ Лидса (Англия), где он служил, находился пивоваренный завод, откуда можно было получать в больших количествах «связанный воздух» (теперь мы знаем, что это был диоксид углерода) для проведения опытов. Пристли обнаружил, что газы могут растворяться в воде, и попытался собирать их не над водой, а над ртутью. Так он сумел собрать и изучить оксид азота, аммиак, хлороводород, диоксид серы (конечно, это их современные названия). В 1774 Пристли сделал самое важное свое открытие: он выделил газ, в котором вещества горели особенно ярко. Будучи сторонником теории флогистона, он назвал этот газ «дефлогистированным воздухом». Газ, открытый Пристли, казался антиподом «флогистированного воздуха» (азота), выделенного в 1772 английским химиком Даниэлом Резерфордом (1749–1819). В «флогистированном воздухе» мыши умирали, а в «дефлогистированном» были весьма активным. (Следует отметить, что свойства газа, выделенного Пристли, еще в 1771 описал шведский химик Карл Вильгельм Шееле , но его сообщение по небрежности издателя появилось в печати лишь в 1777.) Великий французский химик Антуан Лоран Лавуазье сразу же оценил значение открытия Пристли. В 1775 он подготовил статью, где утверждал, что воздух не простое вещество, а смесь двух газов, один из них – «дефлогистированный воздух» Пристли, который соединяется с горящими или ржавеющими предметами, переходит из руд в древесный уголь и является необходимым для жизни. Лавуазье назвал его oxygen , кислород, т.е. «порождающий кислоты». Второй удар по теории элементов-стихий был нанесен после того, как выяснилось, что вода – это тоже не простое вещество, а продукт соединения двух газов: кислорода и водорода. Все эти открытия и теории, покончив с таинственными «стихиями», повлекли за собой рационализацию химии. На первый план вышли только те вещества, которые можно взвесить или количество которых можно измерить каким-то иным способом. В течение 80-х годов 18 в. Лавуазье в сотрудничестве с другими французскими химиками – Антуаном Франсуа де Фуркруа (1755–1809), Гитоном де Морво (1737–1816) и Клодом Луи Бертолле – разработал логическую систему химической номенклатуры; в ней было описано более 30 простых веществ с указанием их свойств. Этот труд, Метод химической номенклатуры , был опубликован в 1787.

Переворот в теоретических взглядах химиков, который произошел в конце 18 в. в результате быстрого накопления экспериментального материала в условиях господства теории флогистона (хотя и независимо от нее), обычно называют «химической революцией».

ДЕВЯТНАДЦАТЫЙ ВЕК

Состав веществ и их классификация.

Успехи Лавуазье показали, что применение количественных методов может помочь в определении химического состава веществ и выяснении законов их объединения.

Атомная теория.

Рождение физической химии.

К концу 19 в. появились первые работы, в которых систематически изучались физические свойства различных веществ (температуры кипения и плавления, растворимость, молекулярный вес). Начало таким исследованиям положили Гей-Люссак и Вант-Гофф, показавшие, что растворимость солей зависит от температуры и давления. В 1867 норвежские химики Петер Вааге (1833–1900) и Като Максимилиан Гульдберг (1836–1902) сформулировали закон действующих масс, согласно которому скорость реакций зависит от концентраций реагентов. Использованный ими математический аппарат позволил найти очень важную величину, характеризующую любую химическую реакцию, – константу скорости.

Химическая термодинамика.

Тем временем химики обратились к центральному вопросу физической химии – о влиянии теплоты на химические реакции. К середине 19 в. физики Уильям Томсон (лорд Кельвин), Людвиг Больцман и Джеймс Максвелл выработали новые взгляды на природу теплоты. Отвергая калористическую теорию Лавуазье, они представляли теплоту как результат движения. Их идеи развил Рудольф Клаузиус . Он разработал кинетическую теорию, согласно которой такие величины, как объем, давление, температура, вязкость и скорость реакций, можно рассматривать исходя из представления о непрерывном движении молекул и их столкновениях. Одновременно с Томсоном (1850) Клазиус дал первую формулировку второго начала термодинамики, ввел понятия энтропии (1865), идеального газа, длины свободного пробега молекул.

Термодинамический подход к химическим реакциям применил в своих работах Август Фридрих Горстман (1842–1929), который на основе идей Клаузиуса попытался объяснить диссоциацию солей в растворе. В 1874–1878 американский химик Джозайя Уиллард Гиббс предпринял систематическое изучение термодинамики химических реакций. Он ввел понятие свободной энергии и химического потенциала, объяснив суть закона действующих масс, применил термодинамические принципы при изучении равновесия между различными фазами при разных температуре, давлении и концентрации (правило фаз). Работы Гиббса создали фундамент современной химической термодинамики. Шведский химик Сванте Август Аррениус создал теорию ионной диссоциации, объясняющую многие электрохимические явления, и ввел понятие энергии активации. Он также разработал электрохимический метод измерения молекулярной массы растворенных веществ.

Крупным ученым, благодаря которому физическая химия была признана самостоятельной областью знаний, был немецкий химик Вильгельм Оствальд , применивший концепции Гиббса при изучении катализа. В 1886 он написал первый учебник по физической химии, а в 1887 основал (вместе с Вант-Гоффом) журнал «Физическая химия» (Zeitschrift für physikalische Chemie).

ДВАДЦАТЫЙ ВЕК

Новая структурная теория.

С развитием физических теорий о строении атомов и молекул были переосмыслены такие старые понятия, как химическое сродство и трансмутация. Возникли новые представления о строении материи.

Модель атома.

В 1896 Антуан Анри Беккерель (1852–1908) открыл явление радиоактивности, обнаружив спонтанное испускание солями урана субатомных частиц, а спустя два года супруги Пьер Кюри и Мария Склодовская-Кюри выделили два радиоактивных элемента: полоний и радий. В последующие годы было установлено, что радиоактивные вещества испускают три вида излучения: a -частицы, b -частицы и g -лучи. Вместе с открытием Фредерика Содди , показавшим, что при радиоактивном распаде происходит превращение одних веществ в другие, все это придало новый смысл тому, что древние называли трансмутацией.

В 1897 Джозеф Джон Томсон открыл электрон, заряд которого с высокой точностью измерил в 1909 Роберт Милликен . В 1911 Эрнст Резерфорд , исходя из электронной концепции Томсона, предложил модель атома: в центре атома находится положительно заряженное ядро, а вокруг него вращаются отрицательно заряженные электроны. В 1913 Нильс Бор , используя принципы квантовой механики, показал, что электроны могут находиться не на любых, а на строго определенных орбитах. Планетарная квантовая модель атома Резерфорда – Бора заставила ученых по-новому подойти к объяснению строения и свойств химических соединений. Немецкий физик Вальтер Коссель (1888–1956) предположил, что химические свойства атома определяются числом электронов на его внешней оболочке, а образование химических связей обусловливается в основном силами электростатического взаимодействия. Американские ученые Гилберт Ньютон Льюис и Ирвинг Ленгмюр сформулировали электронную теорию химической связи. В соответствии с этими представлениями молекулы неорганических солей стабилизируются электростатическими взаимодействиями между составляющими их ионами, которые образуются при переходе электронов от одного элемента к другому (ионная связь), а молекулы органических соединений – за счет обобществления электронов (ковалентная связь). Эти идеи лежат в основе современных представлений о химической связи.

Новые методы исследования.

Все новые представления о строении вещества могли формироваться только в результате развития в 20 в. экспериментальной техники и появления новых методов исследования. Открытие в 1895 Вильгельмом Конрадом Рентгеном Х-лучей послужило основой для создания впоследствии метода рентгеновской кристаллографии, позволяющей определять структуру молекул по картине дифракции рентгеновских лучей на кристаллах. С помощью этого метода была расшифрована структура сложных органических соединений – инсулина, дезоксирибонуклеиновой кислоты (ДНК), гемоглобина и др. С созданием атомной теории появились новые мощные спектроскопические методы, дающие информацию о строении атомов и молекул. Различные биологические процессы, а также механизм химических реакций исследуются с помощью радиоизотопных меток; широкое применение радиационные методы находят и в медицине.

Биохимия.

Эта научная дисциплина, занимающаяся изучением химических свойств биологических веществ, сначала была одним из разделов органической химии. В самостоятельную область она выделилась в последнее десятилетие 19 в. в результате исследований химических свойств веществ растительного и животного происхождения. Одним из первых биохимиков был немецкий ученый Эмиль Фишер . Он синтезировал такие вещества, как кофеин, фенобарбитал, глюкоза, многие углеводороды, внес большой вклад в науку о ферментах – белковых катализаторах, впервые выделенных в 1878. Формированию биохимии как науки способствовало создание новых аналитических методов. В 1923 шведский химик Теодор Сведберг сконструировал ультрацентрифугу и разработал седиментационный метод определения молекулярной массы макромолекул, главным образом белков. Ассистент Сведберга Арне Тизелиус (1902–1971) в том же году создал метод электрофореза – более совершенный метод разделения гигантских молекул, основанный на различии в скорости миграции заряженных молекул в электрическом поле. В начале 20 в. русский химик Михаил Семенович Цвет (1872–1919) описал метод разделения растительных пигментов при прохождении их смеси через трубку, заполненную адсорбентом. Метод был назван хроматографией. В 1944 английские химики Арчер Мартин и Ричард Синг предложили новый вариант метода: они заменили трубку с адсорбентом на фильтровальную бумагу. Так появилась бумажная хроматография – один из самых распространенных в химии, биологии и медицине аналитических методов, с помощью которого в конце 1940-х – начале 1950-х годов удалось проанализировать смеси аминокислот, получающиеся при расщеплении разных белков, и определить состав белков. В результате кропотливых исследований был установлен порядок расположения аминокислот в молекуле инсулина (Фредерик Сенгер), а к 1964 этот белок удалось синтезировать. Сейчас методами биохимического синтеза получают многие гормоны, лекарственные средства, витамины.

Промышленная химия.

Вероятно, наиболее важным этапом в развитии современной химии было создание в 19 в. различных исследовательских центров, занимавшихся, помимо фундаментальных, также прикладными исследованиями. В начале 20 в. ряд промышленных корпораций создали первые промышленные исследовательские лаборатории. В США в 1903 была основана химическая лаборатория «Дюпон», а в 1925 – лаборатория фирмы «Белл». После открытия и синтеза в 1940-х годах пенициллина, а затем и других антибиотиков появились крупные фармацевтические фирмы, в которых работали профессиональные химики. Большое прикладное значение имели работы в области химии высокомолекулярных соединений. Одним из ее основоположников был немецкий химик Герман Штаудингер (1881–1965), разработавший теорию строения полимеров. Интенсивные поиски способов получения линейных полимеров привели в 1953 к синтезу полиэтилена (Карл Циглер ,), а затем других полимеров с заданными свойствами. Сегодня производство полимеров – крупнейшая отрасль химической промышленности.

Не все достижения химии оказались благом для человека. В 19 в. при производстве красок, мыла, текстиля использовали соляную кислоту и серу, представлявшие большую опасность для окружающей среды. В 20 в. производство многих органических и неорганических материалов увеличилось за счет вторичной переработки использованных веществ, а также за счет переработки химических отходов, которые представляют опасность для здоровья человека и окружающей среды.

Литература:

Фигуровский Н.А. Очерк общей истории химии . М., 1969
Джуа М. История химии . М., 1975
Азимов А. Краткая история химии . М., 1983



ХИМИЧЕСКАЯ РЕВОЛЮЦИЯ
ФРАНЦУЗСКАЯ БУРЖУАЗНАЯ РЕВОЛЮЦИЯ И НАУКА

Переворот в химии, связанный с ниспровержением теории флогистона, по времени совпал с французской буржуазной революцией. Этот факт, конечно, нельзя считать случайным. Химическая революция в значительной степени оказалась следствием социально-экономических перемен и сдвигов в умственной жизни общества. Ф. Энгельс в следующих словах характеризовал эти явления: «Великие люди, которые во Франции просвещали головы для приближающейся революции, сами выступали крайне революционно. Никаких внешних авторитетов какого-бы то ни было рода они не признавали. Религия, понимание природы, общество, государственный строй - все это было подвергнуто самой беспощадной критике; все должно было предстать перед судом разума и либо оправдать свое существование, либо отказаться от него... Все прежние формы общества и государства, все традиционные представления были признаны неразумными и отброшены, как старый хлам; мир до сих пор руководствовался одними предрассудками, и все прошлое достойно лишь сожаления и презрения»1.

Химическая революция одновременно была и частью глубоких перемен в науке, прежде всего в химии и физике.

Многие французские ученые приняли непосредственное участие в общественно-политической деятельности в эпоху революции (Г. Монж, Л. Карно, Ф. Фуркруа и др.). По их предложениям была проведена полная реформа образования в стране. Университеты дореволюционной Франции безраздельно находились под влиянием католического духовенства, преподавали в них по устаревшей системе. Связей университетов с промышленностью страны не существовало. Парижская академия наук и другие научные учреждения были также фактически оторваны от жизни. В результате предложений ученых Конвентом в 1793 г. была одобрена новая система организации высшей школы. В 1794 г. была учреждена Нормальная школа для обучения искусству преподавания, открыта Политехническая школа для подготовки гражданских инженеров. Возникли и другие специальные учебные заведения. Старый Королевский ботанический сад был преобразован в Музей естественной истории. Была основана Национальная консерватория (хранилище) наук и ремесел. Все эти меры были направлены на приближение науки и образования к запросам жизни и производства.

Эпоха буржуазной революции ознаменовалась расцветом науки во Франции. В конце XVIII в. во Франции выдвинулись

многие талантливые ученые (Ж. Лагранж, Г. Монж, Н. Карно, П. Лаплас) и плеяда выдающихся химиков и биологов.

А. Л. ЛАВУАЗЬЕ

В развитии химии в эпоху французской буржуазной революции виднейшая роль принадлежит А. Л. Лавуазье. Выдающаяся научная деятельность этого ученого сочеталась с типичными для крупного буржуа темными финансовыми операциями. Общественно-политические взгляды А. Лавуазье нельзя назвать передовыми и соответствующими его новаторской научной деятельности.

Антуан Лоран Лавуазье родился 26 августа 1743 г. Он получил юридическое образование, но интересовался естественными науками, особенно химией, занимался также и литературой. По окончании университета А. Лавуазье отказался от юридической карьеры и сосредоточил свое внимание на работах в области естествознания. Он совершил несколько минералогических экскурсий, в ходе которых интересовался химическим составом ряда минералов и вод питьевых источников.

В 1764 г. А. Лавуазье принял участие в конкурсе, объявленном Парижской академией, на лучший способ освещения улиц. При разработке новых типов светильников он проявил большую настойчивость и получил золотую медаль. В 1768 г. А. Лавуазье был избран адъюнктом Академии наук и одновременно стал пайщиком откупа по сбору налогов от населения. Получая огромные барыши, пайщики откупа были окружены всеобщей ненавистью народа. В 1771 г. он женился на дочери богатого откупщика - Анне Марии Польз.

В 1775 г. А. Лавуазье был назначен управляющим пороховым и селитряным делом Франции. Он переехал в Арсенал и устроил на собственные средства хорошо оборудованную лабораторию. Здесь в течение 15 лет он вел напряженные экспериментальные исследования и постоянно участвовал в различных ученых комиссиях.

Начавшаяся в 1789 г. революция оторвала А. Лавуазье от

научной работы по химии. В первые годы революции он занимался экономическими проблемами, был членом комиссии по мерам и весам, комиссаром национального казначейства и т. д. К революции он вскоре стал относиться отрицательно.

В 1792 г. из-за связей с роялистами он был освобожден от должности управляющего пороховым делом. В марте 1792 г. декретом Национального собрания был ликвидирован откуп. В августе 1793 г. была закрыта Академия наук, а в октябре того же года Конвент принял решение об аресте бывших откупщиков. После следствия 28 бывших откупщиков, в том числе и А. Лавуазье, были приговорены революционным трибуналом к казни. 8 мая 1794 г. Лавуазье был гильотинирован.

Некоторые ученые (Дж. Пристлей, Ш. Благден, Дж. Уатт и др.) оспаривали приоритет ряда его крупных открытий. Следует, однако, отметить, что продолжающаяся и поныне дискуссия вокруг имени Лавуазье носит буржуазно-националистическую окраску.
КИСЛОРОДНАЯ ТЕОРИЯ ГОРЕНИЯ

Одной из первых публикаций А. Лавуазье был мемуар «О природе воды» (1769). Работа была посвящена вопросу о возможнбсти превращения воды в землю. В течение 101 дня А. Лавуазье нагревал воду в стеклянном сосуде «пеликан» и обнаружил (как и К. Шееле) образование в воде листочков сероватой земли. В отличие от К. Шееле А. Лавуазье не производил химического анализа этой земли, но путем взвешивания сосуда и высушенных листочков установил, что они получаются в результате растворения стекла.

Решив таким образом вопрос, занимающий в то время ученых, А. Лавуазье наметил исследование «О природе воздуха». Изучив и проанализировав данные о поглощении воздуха в различных химических процессах, он составил обширный план исследования: «Операции, посредством которых, - писал он, - можно добиться связывания воздуха, суть: рост растений, дыхание животных, при некоторых обстоятельствах - обжиг, наконец, некоторые (другие) химические реакции. Я признал, что должен начать с этих экспериментов» ".

Во второй половине 1772 г. А. Лавуазье уже был занят опытами сжигания различных веществ, прежде всего фосфора. Он установил, что для полного сжигания фосфора потребно большое количество воздуха. Объяснение этого факта, данное им, было еще флогистическим. Однако вскоре он представил Академии наук мемуар, в котором писал: «... я открыл, что сера при горении вовсе не теряет в весе, а, напротив, увеличивается, т. е. из 1 фунта серы можно получить значительно больше, чем 1 фунт купоросной кислоты... то же самое можно сказать о фосфоре;

это увеличение происходит благодаря громадному количеству воздуха, который связывается при горении»1. Далее А. Лавуазье высказывает предположение, что увеличение массы металлов при кальцинации также объясняется поглощением воздуха.

В следующем году А. Лавуазье поставил исследования по кальцинации металлов. Он сообщает также о дальнейших опытах по поглощению воздуха в процессах горения и высказывается (пока еще не в категорической форме) о субстанции, содержащейся в воздухе и связывающейся с горящими веществами в процессе горения. Описывая опыты кальцинации металлов, А. Лавуазье подтвердил факт поглощения при этом воздуха.

Для всестороннего изучения процессов горения и действия на различные вещества высоких температур А. Лавуазье построил большую зажигательную машину с двумя большими линзами, с помощью которой произвел сжигание алмаза. Результаты всех этих исследований стояли в полном противоречии с теорией флогистона. А. Лавуазье приходилось соблюдать крайнюю осторожность в формулировках выводов. Но он продолжал работать по намеченному плану, все более и более убеждаясь в полной необоснованности теории флогистона. В 1774 г. А. Лавуазье начал прямую атаку на эту теорию. Анализируя результаты своих опытов по сжиганию различных веществ, он вскоре пришел к выводу, что воздух - не простое тело, как думали ученые XVIII в., а смесь различных по свойствам газов. Одна из частей смеси поддерживала горение. Опытным путем А. Лавуазье отверг предположение, что это «фиксируемый воздух» Блэка, наоборот, он утверждал, что эта часть «наиболее удобна для дыхания».

В это время (70-е гг.) открытие кислорода «носилось в воздухе» и стало уже неизбежным. Действительно, К. Шееле открыл кислород в 1772, а Дж. Пристлей - в 1774 гг. А. Лавуазье не сразу пришел к открытию кислорода. Изучая кальцинацию металлов с образованием «извести», он полагал, что «наиболее пригодная для дыхания» часть воздуха может быть получена из металлической «извести», т. е. из оксидов любых металлов. Однако его попытки не увенчались успехом, и только в ноябре 1774 г. (после свидания с Дж. Пристлеем) он перешел к опытам с оксидом ртути.

Эти опыты А. Лавуазье выполнил двумя путями. Он прокаливал оксид ртути с углем и получил «фиксируемый воздух» Блэка, а также просто нагревал оксид ртути. Полученный при этом газ представлял, по его мнению, наиболее чистую часть воздуха. А. Лавуазье пришел также к заключению, что «фиксируемый воздух» представляет собой соединение «чистого» воздуха с углем. В своем докладе академии он называл «наиболее чистую

часть воздуха» также «весьма удобовдыхаемым» или «живительным воздухом».

Важные выводы были сформулированы А. Лавуазье в мему-аре «Опыты над дыханием животных»: 1. При дыхании происходит взаимодействие только с чистой «наиболее пригодной для дыхания» частью атмосферного воздуха. Остальная часть воздуха представляет собой лишь инертную среду, которая не изменяется при дыхании. 2. Свойства испорченного воздуха, остающегося в реторте после прокаливания металлов, ничем не отличаются от свойств воздуха, в котором некоторое время находилось животное.

Начиная с 1777 г. А. Лавуазье выступил открыто против теории флогистона. В одном из мемуаров он писал: «Химики сделали из флогистона смутное начало, которое не определено в точной мере и которое поэтому пригодно для любых объяснений, в которые его хотят ввести. Иногда это начало весомо, иногда оно таковым не является; иногда это свободный огонь, иногда это огонь, соединенный с землистым элементом; иногда оно проходит сквозь поры сосудов, иногда они непроницаемы для него. Он объясняет одновременно и щелочность и нейтральность, прозрачность и непрозрачность, окраску и отсутствие окраски; это настоящий Протей, который меняет свой облик каждое мгновение»".

Интересно, что эти слова А. Лавуазье напоминают формулировки М. В. Ломоносова, писавшего в 1744 г. об «огненной материи», которая то входит в поры тел, «... как бы привлекаемая каким-то приворотным зельем, то бурно покидает их, как бы объятая ужасом»1 2.

В мемуаре «О горении вообще» (1777) А. Лавуазье дал следующую характеристику явлений горения: «1. При всяком горении происходит выделение «огненной материи», или света. 2. Тела могут гореть только в очень немногих видах воздуха, или, вернее, горение может происходить лишь только в одном виде воздуха, который Пристлей называл безфлогистонным и который я буду называть «чистым» воздухом. Тела, которые мы называем горючими, не только не горят в пустоте, или каком-либо другом воздухе, но там они гаснут так быстро, как если бы их погружали в воду... 3. При всяком горении происходит разрушение, или разложение «чистого» воздуха, а вес сгоревшего тела увеличивается точно на количество поглощенного воздуха. 4. При всяком горении горящее тело превращается в кислоту... так, если под колоколом сжигать серу, то продуктом горения будет серная кислота.. .»3.

Основываясь на последнем положении, А. Лавуазье создает теорию кислот, которые образуются при соединении кислотооб

разующего начала с горючими веществами. Этому кислотообразующему началу в связи с этим он дал название «оксиген» (родящий кислоту, или кислород). Теория кислот А. Лавуазье оказалась, однако, не соответствующей многим известным фактам. Так, соляная кислота образуется без всякого участия кислорода. А. Лавуазье в данном случае принужден был прибегнуть к фантазии для объяснения состава этой кислоты. Он допустил, что в соляной кислоте содержится особое простое тело - мурий, - находящееся в кислоте в окисленном состоянии. Поэтому до недавнего времени соляная кислота называлась у фармацевтов муриевой кислотой.

Противоречил теории кислот Лавуазье и факт образования воды при сжигании водорода. В течение нескольких лет Лавуазье безуспешно пытался обнаружить в воде следы кислоты. При этом он установил даже объемные отношения водорода и кислорода в воде (12:22,9, т. е. почти как 1:2). Этому результату он, однако, не придал значения. При разложении воды он, действуя на воду железными опилками, получил водород. Эти исследования были завершающими в запланированной серии опытов, поставленных с целью ниспровержения теории флогистона.

Упомянем, что претензии со стороны некоторых ученых на приоритет открытий А. Лавуазье оказались неосновательными. Действительно, открытие кислорода по существу принадлежит именно А. Лавуазье, а не К. Шееле и Дж. Пристлею, остававшихся, по словам Ф. Энгельса, «в плену флогистических категорий» и не понимавших, что именно они открыли. «И если даже, - писал далее Энгельс, - А. Лавуазье и не дал описания кислорода, как он утверждал впоследствии, одновременно с другими и независимо от них, то все же, по существу дела, открыл кислород он, а не те двое, которые только описали его, даже не догадываясь о том, что именно они описывали»

ЭЛЕМЕНТАРНЫЙ КУРС ХИМИИ ЛАВУАЗЬЕ

В процессе разработки основ антифлогистической кислородной теории горения и дыхания у А. Лавуазье не было недостатка в критиках его новых взглядов. В связи с этой критикой ему приходилось ставить новые опыты, высказывать новые обобщения, шаг за шагом доказывать несостоятельность выдвигавшихся возражений. При этом он решал различные вопросы, не имеющие прямого отношения к намеченному плану исследований. Так, ему пришлось опровергать объяснение Г. Кавендиша по вопросу о механизме образования водорода при действии разбавленных кислот на металл. А. Лавуазье указал, что водород в данном случае выделяется не в результате разложения металла, а в результате разложения воды, разбавляющей кислоту (кислотой в то время считали кислотные оксиды).

числу вопросов, вызывавших споры при объяснении явлений горения, относился вопрос о природе теплоты. А. Лавуазье была хорошо известна кинетическая теория теплоты, но он не был атомистом и поэтому остался на позициях теплотворной материи в отличие от М. В. Ломоносова. При этом он считал теплород одним из элементарных флюидов, и, таким образом, в этом вопросе его позиция совпадала с позицией ортодоксальных флогистиков.

А. Лавуазье принадлежит заслуга первоисследователя тепловых эффектов реакций. Совместно с П. Лапласом он сконструировал калориметр и в течение 15 лет работал над определением тепловых эффектов, положив тем самым основание термохимии. А. Лавуазье принадлежит также заслуга в установлении особенностей состава органических веществ. На основе анализов он нашел, что органические вещества состоят из углерода, водорода и кислорода. Затем к этим простым телам были добавлены азот и фосфор.

Лавуазье считал одним из важнейших положений химии принцип неуничтожаемости материи. Флогистики, как известно, игнорировали этот принцип, например, при объяснении увеличения массы металлов npnf кальцинации. Сформулировав этот принцип, А. Лавуазье иллюстрировал его примером образования алкоголя, в результате брожения виноградного сока:

виноградный сок = угольная кислота + алкоголь.

Около 1785 г. у А. Лавуазье возникла мысль систематически изложить открытые им новые факты и объяснения различных явлений с точки зрения кислородной теории в кратком «Элементарном курсе химии». При подготовке этого курса ему пришлось дополнительно исследовать и решить несколько принципиальных вопросов, связанных, в частности, с разработкой учения о началах, или простых веществах, с созданием химической номенклатуры и с формулировкой новых задач химии, возникших на основе кислородной теории.

В «Предварительном рассуждении» к курсу А. Лавуазье говорит о простых телах: «Итак, химия идет к своей цели, к своему совершенству, разделяя, подразделяя и еще подразделяя тела, и мы не знаем, каков будет предел ее успехов. Мы не можем поэтому утверждать, что то, что сегодня признается простым, действительно является простым. Мы можем только сказать, что то или иное вещество является лишь пределом делимости посредством химического анализа и что оно не может быть разделено далее при современном состоянии наших знаний»1.

Говоря далее об элементах, А. Лавуазье не дает однозначного определения этого понятия: «Итак, я скажу, что если названием элементов обозначить простые или неделимые молекулы, составляющие тела, то, вероятно, мы их не знаем; если же, напротив, мы свяжем с названием элементов, или начал, представление о последнем пределе, достигаемом анализом, то все вещества, которые мы еще не смогли никоим образом разложить, являются для нас элементами»2.

Это определение по существу совпадает с бойлевским.

Другим вопросом, который возник перед А. Лавуазье при работе над «Элементарным курсом химии», была разработка химической номенклатуры. В алхимическом периоде, когда символика и стремление зашифровать обычные названия веществ были широко распространены, многие вещества получили случайные и часто различные у разных авторов названия. Традиция присваивать вновь открываемым веществам случайные названия сохранилась и в дальнейшем. В таких условиях никакой системы химической номенклатуры не могло быть создано.

В XVIII в. даже химикшфлогистики ощущали острую нужду в создании системы химической номенклатуры, поскольку число известных веществ во второй половине столетия быстро увеличивалось. Один из видных химиков-флогистиков Гитон де Морво (с. 68) еще в 1782 г. начал разработку системы химической номенклатуры на основе теории флогистона. А. Лавуазье, занятый той же проблемой, приложил усилия для привлечения на свою сторону де Морво, что ему удалось в 1786 г. Несколько ранее к А. Лавуазье примкнул один из виднейших химиков того времени - К- Л. Бертолле (с. 68), а вслед за ним - А. Фуркруа.

В союзе с этими учеными А. Лавуазье организовал номенклатурную комиссию Парижской академии, которая и приступила к работе в 1786 г. Через год разработанная номенклатура была,опубликована. Она базировалась на названиях простых тел, список (и классификация) которых был составлен самим А. Лавуазье. В числе новых названий комиссия утвердила названия для кислорода (оксиген), водорода (гидроген) и азота. Последнее название, отличающееся от международного «нитрогениум», было предложено А. Лавуазье и принято, несмотря на то что

Во введении к «Элементарному курсу химии» А. Лавуазье писал: «Отсутствие в начальном курсе химии главы о составных и элементарных частях тел неминуемо вызовет удивление, но я позволю себе здесь заметить, что стремление считать все тела природы состоящими лишь из трех или четырех элементов происходит от предрассудка, перешедшего к нам от греческих философов» ".

Для решения вопроса об элементарных составных частях тел А. Лавуазье не располагал необходимыми фактическими данными и принужден был базироваться в основном на результатах своих собственных исследований. Вероятно, поэтому его взгляды отличаются неопределенностью и непоследовательностью.

члены комиссии считали его неудачным и предлагали названия «нитроген»,. «селитроген», «алкалиген». Слово «азот»по предложению А. Лавуазье, переводится словом «безжизненный». Такой перевод, однако, неправилен. В действительности, слово «азот», не существующее в греческом языке, взято из алхимического лексикона, где оно обозначало «философскую ртуть».

Названия сложных веществ (кислот, щелочей, солей и др.) были установлены как производные от простых тел. Названия кислот и солей видоизменялись (в окончаниях) в зависимости от степени окисления кислотообразующего элемента (сульфат, сульфит, сульфид и т. д.). Соли азотной кислоты, вопреки названию элемента, были названы нитратами.

В связи с новой номенклатурой в «Элементарном курсе» А. Лавуазье приведены классификационные таблицы кислот, солей и других соединений по степеням окисления кислотообразующих элементов. В приложении к «Химической номенклатуре» приведены предложенные химиками П. А. Аде (1763-1834) и Ж- А. Гассенфратцем (1755-1827) символы простых тел, не получившие, однако, признания.

Что касается самых простых тел, то в «Элементарном курсе» А. Лавуазье привел их список, выделив следующие четыре группы: ,

1. Простые вещества, представленные во всех трех царствах природы, которые можно рассматривать как элементы тел: свет, теплород, кислород, азот и водород.

2. Простые неметаллические вещества, окисляющиеся и дающие кислоты: сера, фосфор, уголь, радикал муриевой кислоты, радикал плавиковой кислоты, радикал буровой (борной) кислоты.

3. Простые металлические вещества, окисляемые и дающие кислоты: сурьма, серебро, мышьяк, висмут, кобальт, медь, олово, железо, марганец, ртуть, молибден, никель, золото, платина, свинец, вольфрам, цинк.

4. Простые вещества, солеобразующие и землистые: известь, магнезия, барит, глинозем, кремнезем.

В примечании к этой таблице А. Лавуазье отметил, что он не внес в список простых веществ «постоянные» (едкие) щелочи, поскольку эти вещества, по-видимому, сложного состава.

В таблице А. Лавуазье фигурирует 23 простых тела, 3 радикала2 кислот, 5 земель и 2 невесомых флюида. В таблице име

тся явные несообразности. Помимо внесения невесомых флюида, в ней фигурируют в качестве простых веществ «земли» и, конец, металлы отнесены в соответствии с общей теорией кис-£>т к числу кислотообразующих элементов. Эта таблица была рервой в истории науки попыткой" классификации простых тел.

«Элементарный курс химии» А. Лавуазье с прекрасно выполненными его женой (М. Лавуазье) иллюстрациями появился в 1789 г., почти одновременно с началом французской буржуазной ^революции. Появление этого курса собственно и ознаменовало химическую революцию, на что указал в курсе сам А. Лавуазье. |Правда, еще оставалось немало противников новой химии, тй-|ких, как Дж. Пристлей, активно выступавших в защиту теории флогистона. Но число противников быстро уменьшалось. Так, ^"английский ученый-флогистик Р. Кирван (1733-1812) выпустил да 1787 г. книгу «Очерк о флогистоне и конституции кислот». А. Лавуазье и его соратники ответили на выход этой книги сле-Цдующим образом: книга Р. Кирвана была переведена на французский язык и издана с комментариями к каждой главе, написанными самим А. Лавуазье, К. Бертолле, Г. де Морво, А. Фурк-фуа и Г. Монжем. В этих комментариях все основные положения |Р. Кирвана подверглись уничтожающей критике. В конце кон-| цов он принужден был признать ошибочность своих взглядов и примкнул к кислородной теории в 1796 г. ц,/: Несмотря, однако, на возражения представителей теории фло-! гистона, принадлежащих к старшему поколению химиков, кислородная теория и построенная на ее основе новая химия одер-Д жали крупную победу. И все же нельзя сказать, что «химическая ^ революция» была завершена, как думал сам А. Лавуазье, выхо-дом «Элементарного курса химии». Новые воззрения были раз-виты и получили достаточно полное завершение последующим 4 поколением химиков лишь после внедрения в химию атоми-„г, стики.

Значение кислородной теории оказалось значительно большим, чем просто объяснение явлений горения и дыхания. Отказ от теории флогистона потребовал пересмотра всех основных принципов и понятий химии, изменения терминологии и номенклатуры веществ. Поэтому с создания кислородной теории начался переломный этап в развитии химии, названный "химической революцией".

В 1785-1787 гг. четыре выдающихся французских химика - Антуан Лоран Лавуазье, Клод Луи Бертолле, Луи Бернар Гитон де Морво и Антуан Франсуа де Фуркруа, - по поручению Парижской академии наук разработали новую систему химической номенклатуры. Логика новой номенклатуры предполагала построение названия вещества по названиям тех элементов, из которых вещество состоит. Основные принципы этой номенклатуры используются до настоящего времени.

В 1789 г. Лавуазье издал свой знаменитый учебник "Элементарный курс химии", целиком основанный на кислородной теории горения и новой химической номенклатуре. Появление этого курса собственно и ознаменовало, по мнению Лавуазье, химическую революцию (1789 - год начала Французской революции, одной из жертв которой станет в 1794 г. и Лавуазье). В "Элементарном курсе химии" Лавуазье привёл первый в истории новой химии список химических элементов (таблицу простых тел), разделённых на несколько типов

1. Простые вещества, относящиеся ко всем царствам природы, которые можно рассматривать как элементы:

ТЕПЛОРОД

КИСЛОРОД

2. Простые неметаллические вещества, окисляющиеся и дающие кислоты:

РАДИКАЛ МУРИЕВОЙ КИСЛОТЫ (Cl)

РАДИКАЛ ПЛАВИКОВОЙ КИСЛОТЫ (F)

РАДИКАЛ БУРОВОЙ КИСЛОТЫ (B)

3. Простые металлические вещества, окисляющиеся и дающие кислоты:

ВОЛЬФРАМ

МАРГАНЕЦ

МОЛИБДЕН

4. Простые солеобразующие землистые вещества:

ГЛИНОЗЁМ

МАГНЕЗИЯ

КРЕМНЕЗЁМ

нефлогистонный кислородный горение лавуазье

Рис.3.

Касательно земель Лавуазье на основании их абсолютной инертности к кислороду высказывал предположение о том, что земли представляют собой оксиды неизвестных элементов, впоследствии полностью подтвердившееся. Особую группу для земель в своей таблице элементов Лавуазье выделил, поскольку строго придерживался определения элемента, данного Бойлем: "Если мы… свяжем с названием элементов… представление о последнем пределе, достигаемым анализом, то все вещества, которые мы ещё не смогли никаким способом разложить, являются для нас элементами. …Мы не можем уверять, что считаемое нами сегодня простым является таковым в действительности". Данную концепцию элементов принято называть эмпирико-аналитической, поскольку Лавуазье избрал критерием определения элемента опыт и только опыт, категорически отвергая любые неэмпирические рассуждения об атомах и молекулах, само существование которых невозможно подтвердить опытным путём. Эту концепцию Лавуазье предельно ясно сформулировал в предисловии к своему учебнику: "Я не считал возможным уклониться от требований строгого закона - не заключать ничего сверх того, что даёт непосредственно опыт и не стараться спешными заключениями восполнять молчание фактов".

Созданная Лавуазье рациональная классификация химических соединений основывалась, во-первых, на различии в элементном составе соединений и, во-вторых, на характере их свойств (кислоты, основания, соли, солеобразующие вещества, органические вещества). При этом, как и Бойль, Лавуазье считает, что свойства вещества определяются его составом. Зависимость свойств вещества от состава, описанная Лавуазье, представляет собой закономерность, отражающую взаимосвязь между качественными и количественными характеристиками вещества.

Важнейшим результатом исследований Лавуазье явилось формулирование им закона сохранения массы. Проанализировав результаты собственных исследований количественного состава веществ и соотношения масс реагентов и продуктов реакции, а также результаты подобных исследований других учёных, Лавуазье показал, что во всех случаях масса веществ в ходе химических реакций не изменяется: "Можно принять в качестве принципа, что во всякой операции количество материи одинаково до и после опыта, что качество и количество начал остаются теми же самыми". Следует отметить, что Лавуазье вывел закон сохранения массы опять-таки исключительно из экспериментальных данных, не используя каких-либо теоретических предпосылок, не основанных на опыте.

Химическая революция завершила период становления химии; она ознаменовала собой полную рационализацию химии, окончательный отказ от устаревших натурфилософских и алхимических представлений о природе вещества и его свойств. После химической революции химия вступила в период количественных законов, в котором была создана и развита новая концепция химического элемента - атомно-теоретическая.

С тех пор, как человечество появилось на этой планете, оно вело относительно спокойный и стабильный образ жизни, потребляя одни и те же продукты, черпая воду из одних и тех же источников и вдыхая один и тот же воздух. До недавнего времени существовал хрупкий баланс между нами и остальной природой, а при всякого рода изменениях окружающей среды или климата, баланс сил выравнивался вновь благодаря безостановочному ходу эволюции.

Вследствие наличия умственных способностей и известной доли выносливости нашего организма, люди, как биологический вид, развили способность вмешиваться в природу и изменять окружающую среду. Создание инструментов, открытие огня, одомашнивание животных, окультуривание диких растений, образование первых поселений – всё это было первыми шагами на пути к прогрессу и цивилизации.

Это было важно для людей, но всё это было слабыми потугами, ибо человек не мог причинить сильный вред, поскольку малочисленная популяция людей целиком и полностью пока зависела от сил природы и дрожала при малейших её капризах. Со временем увеличение концентрации людей их вторжения стали не только более настойчивыми, но и более постоянными, характер этих вторжений стал ещё более направленным. Это привело к тому, что, в конце концов, во второй половине прошлого века способность людей ускорять процессы изменилась настолько, что «скорость нашего собственного развития» начала угрожать нам самим.

На ум приходит детище братьев Вачовски – «Матрица», где по иронии судьбы машины, созданные людьми, начали использовать самих же людей в качестве биологически выгодного топлива. Нынешняя реальность подталкивает к мыслям, так красочно изображённым в упомянутом блокбастере: люди уже давно изощряются в изобретении множества механизмов, машин и веществ, обосновывая это всё желанием «улучшить» собственную жизнь, то есть, стать цивилизованными.

Для большей наглядности обратимся к истории химических «изобретений» и, как уже было сказано, посмотрим на вторую половину прошлого века в цифрах. На графике наглядно представлен рост числа изобретений химических веществ во второй половине двадцатого века. Как видно, с 50-х годов прошлого века начался настоящий бум химической промышленности, и уже к 1975 году статистика зафиксировала 1.000.000 синтетических химических материалов. Дальнейшие «успехи» химиков различных стран характеризовались добавлением порядка 1000 новых химикалиев ежегодно. К концу прошлого тысячелетия у человечества «в ходу», т.е. в широком использовании, находилось более 60.000 химических веществ, полученных искусственным путём.

Самое большое число «изобретений» такого рода касается самых слабых звеньев цепи жизнеобеспечения человечества, а именно:

производства часто используемых материалов

  • ткани
  • изоляторы
  • покрытия

производства и потребления наиболее часто употребляемых продуктов

  • пищевые добавки
  • вещества, используемые в обработке и хранении
  • вещества, используемые в лекарственных средствах

использования распространённых и доступных источников энергии и сред

  • земли
  • воздуха

Это созданный нами круговорот химических веществ уже является частью нашей жизни; а мы, как любой биологический вид, должны использовать его, адаптироваться к нему или, что менее всего возможно, избежать его, чтобы выжить. Данную концепцию можно понять, если принять факт нашего собственного участия, да, именно участия, в этом непрерывном процессе – мы с одной стороны производители, а с другой стороны – продукт этого кругооборота. Поэтому то, любой поворот нашего собственного развития или наших знаний замыкается на нас самих.

Временами наши опыты шли нам на пользу, как это было с пенициллином, спасшим не один миллион жизней на войнах и в мирное время. А имеются и такие, о которых хотели бы забыть даже сами их открыватели – уместно вспомнить одно из самых мощных ОМП, газ “Зарин” (который был открыт по роковой случайности немецкими химиками, пытавшимися сделать пестициды более действенными, как раз накануне Второй Мировой Войны). Природа третьих открытий нам не понятна, равно как и наша собственная, так как они просто изменяют нас самих: не надо, наверное, приводить примеры влияния наркотических средств на человеческий организм. Хотя на заре аптекарского дела в Старом Свете, а затем и в прочих частях мира, они подавались как нужные людям лекарственные средства.

Казалось бы, если какое-то вещество было изобретено с мыслью о благе людей, то почему после этого «всплывают» некоторые факты, о существовании которых мы и не подозревали? На практике всё достаточно просто – опасность искусственных веществ заключается как раз в том, что нам ничего неведомо со сколь-нибудь достоверной точностью об их влиянии на то, с чем они соприкасаются, на всём протяжении их бесконтрольного существования.

Это можно показать на элементарном примере: нам давно уже известно, как нам кажется, всё о кислороде. Кислород является чрезвычайно критическим для нашего организма, однако чистый кислород способен нас убить. Поскольку в природе кислород не встречается нам без примесей, мы и не способны его потреблять в таком виде. Как видите, мы участвуем в цепочках жизни именно таким образом, как нас приучила Природа; и любое отклонение (а здесь мы попытались улучшить нужное нам вещество) оказывается фатальным. Вывод здесь один: в чём мы можем быть абсолютно уверены в отношении любого вещества, так это в незнании того, как долго его потенциально вредное действие может не проявлять себя.

Одним из неотъемлемых атрибутов революции, который мы также сегодня наблюдаем с нарастающей тревогой, является негласный запрет на свободу информации, касающийся изобретаемых продуктов, ингредиентов, составов и их маркировки. Хотя всё больше и больше стран вводят обязательные требования для представления информации о составе продуктов питания, медицинских препаратов, одежды и пр., по-прежнему практически невозможно в бытовых условиях определить из чего состоит, например, ваш стиральный порошок, краска, пластмассовое изделие, да что угодно! Самым вызывающим в этом отношении является сокрытие лиц, которые непосредственно причастны к установлению этого режима секретности.

Избыток ненужных химикалиев уже стал настолько очевидным, что ни у кого не вызывает восторг изобретение нового материала, полимера или заменителя. Главным подтверждением этому служит всё нарастающее стремление людей к экологически чистым продуктам. «Благими намерениями вымощена дорога в ад» вот так можно было бы сказать о том, пути, который необходимо пройти всем людям, чтобы предотвратить «победу химической революции».

Последние тенденции в научных достижениях свидетельствуют о большем сдвиге в сторону биологии, генетики и всего «зеленого». Скорее всего, что у людей «откроются глаза» на бесконечные возможности природы вне химии и ядерной энергии, и они придут к выводу, что если запас чего-то не является восстанавливаемым, то, наверное, нет смысла строить долгосрочные планы на этом конечном элементе.



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то